15 resultados para physical chemistry, polymer physics, microscopy
em Aston University Research Archive
Resumo:
To help understand how sugar interactions with proteins stabilise biomolecular structures, we compare the three main hypotheses for the phenomenon with the results of long molecular dynamics simulations on lysozyme in aqueous trehalose solution (0.75 M). We show that the water replacement and water entrapment hypotheses need not be mutually exclusive, because the trehalose molecules assemble in distinctive clusters on the surface of the protein. The flexibility of the protein backbone is reduced under the sugar patches supporting earlier findings that link reduced flexibility of the protein with its higher stability. The results explain the apparent contradiction between different experimental and theoretical results for trehalose effects on proteins.
Resumo:
The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective isomorphic substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a similar manner within the glassy matrix and do not disrupt the short range order of the network former. Residual differences are attributed solely to the variation in ionic radius between the two species. Successful simplification of the 2
Resumo:
Melt quenched silicate glasses containing calcium, phosphorus and alkali metals have the ability to promote bone regeneration and to fuse to living bone. Of these glasses 45S5 Bioglass® is the most widely used being sold in over 35 countries as a bone graft product for medical and dental applications; particulate 45S5 is also incorporated into toothpastes to help remineralize the surface of teeth. Recently it has been suggested that adding titanium dioxide can increase the bioactivity of these materials. This work investigates the structural consequences of incorporating 4 mol% TiO2 into Bioglass® using isotopic substitution (of the Ti) applied to neutron diffraction and X-ray Absorption Near Edge Structure (XANES). We present the first isotopic substitution data applied to melt quench derived Bioglass or its derivatives. Results show that titanium is on average surrounded by 5.2(1) nearest neighbor oxygen atoms. This implies an upper limit of 40% four-fold coordinated titanium and shows that the network connectivity is reduced from 2.11 to 1.97 for small quantities of titanium. Titanium XANES micro-fluorescence confirms the titanium environment is homogenous on the micron length scale within these glasses. Solid state magic angle spinning (MAS) NMR confirms the network connectivity model proposed. Furthermore, the results show the intermediate range order containing Na-O, Ca-O, O-P-O and O-Si-O correlations are unaffected by the addition of small quantities of TiO2 into these systems.
Resumo:
Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)1-(x+y), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Qmax = 28 Å-1) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and PO bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials. © 2013 The Owner Societies.
Resumo:
A series of sulfated alumina catalysts were synthesised by wet impregnation with sulfate-containing solutions. The degree of surface sulfation and corresponding surface acidity could be readily tuned by varying the molarity of impregnating solution. Strong acid treatments (>0.1 M) induced aluminium-sulfate crystallisation with a concomitant decrease in porosity and surface acidity. Platinum-doped sulfated aluminas showed enhanced activity towards methane, ethane and propane combustion. Activity scaled with the degree of accessible surface sulfate and platinum loading, however C-H bond scission appeared rate-limiting over both pure and presulfated aluminas. The magnitude of sulfate-promoted propane oxidation was greatest under heavily oxidising conditions (C3H6∶O2 > 1:20) but independent of Pt loading, confirming that support-mediated alkane activation is the dominant factor in the promotional mechanism.
Resumo:
Crotonaldehyde (2-butenal) adsorption over gold sub-nanometer particles, and the influence of co-adsorbed oxygen, has been systematically investigated by computational methods. Using density functional theory, the adsorption energetics of crotonaldehyde on bare and oxidised gold clusters (Au , d = 0.8 nm) were determined as a function of oxygen coverage and coordination geometry. At low oxygen coverage, sites are available for which crotonaldehyde adsorption is enhanced relative to bare Au clusters by 10 kJ mol. At higher oxygen coverage, crotonaldehyde is forced to adsorb in close proximity to oxygen weakening adsorption by up to 60 kJ mol relative to bare Au. Bonding geometries, density of states plots and Bader analysis, are used to elucidate crotonaldehyde bonding to gold nanoparticles in terms of partial electron transfer from Au to crotonaldehyde, and note that donation to gold from crotonaldehyde also becomes significant following metal oxidation. At high oxygen coverage we find that all molecular adsorption sites have a neighbouring, destabilising, oxygen adatom so that despite enhanced donation, crotonaldehyde adsorption is always weakened by steric interactions. For a larger cluster (Au, d = 1.1 nm) crotonaldehyde adsorption is destabilized in this way even at a low oxygen coverage. These findings provide a quantitative framework to underpin the experimentally observed influence of oxygen on the selective oxidation of crotyl alcohol to crotonaldehyde over gold and gold-palladium alloys. © 2014 the Partner Organisations.
Resumo:
The surface chemistry of crotonaldehyde and propene, primary and secondary reaction products in the aerobic selective oxidation of crotyl alcohol, has been studied by temperature-programmed reaction over Au/Pd(111) surface alloys. Gold strongly promotes desorption versus reaction at mole fractions ≥0.3 (crotonaldehyde) and ≥0.8 (CH); only ∼5% of the chemisorbed aldehyde or alkene react over Au-rich alloys. Surprisingly, co-adsorbed oxygen strongly suppresses crotonaldehyde decomposition over both clean Pd(111) and alloy surfaces, while CH combustion, an important undesired side-reaction over unpromoted Pd(111), is also moderated by Au. © the Owner Societies.
Resumo:
Highly dispersed H3PW12O40/SiO2 catalysts with loadings between 3.6 and 62.5 wt% have been synthesised and characterised. The formation of a chemically distinct interfacial HPW species is identified by XPS, attributed to pertubation of W atoms within the Keggin cage in direct contact with the SiO2 surface. EXAFS confirms the Keggin unit remains intact for all loadings, while NH3 adsorption calorimetery reveals the acid strength >0.14 monolayers of HPW is loading invariant with initial ΔHads = −164 kJ mol−1. Lower loading catalysts exhibit weaker acidity which is attributed to an inability of highly dispersed clusters to form crystalline water. For reactions involving non-polar hydrocarbons the interfacial species where the accessible tungstate is highest confer the greatest reactivity, while polar chemistry is favoured by higher loadings which can take advantage of the H3PW12O40 pseudo-liquid phase available within supported multilayers. © the Owner Societies 2006.
Resumo:
The genesis of a catalytically active model Pt/Al2O3/NiAl{110} oxidation catalyst is described. An ultrathin, crystalline γ-Al2O3 film was prepared via direct oxidation of a NiAl{110} single-crystal substrate. The room-temperature deposition of Pt clusters over the γ-Al2O3 film was characterised by LEED, AES and CO titration and follows a Stranski–Krastanov growth mode. Surface sulfation was attempted via SO2/O2 adsorption and thermal processing over bare and Pt promoted Al2O3/NiAl{110}. Platinum greatly enhances the saturation SOx coverage over that of bare alumina. Over clean Pt/γ-Al2O3 surfaces some adsorbed propene desorbs molecularly [similar]250 K while the remainder decomposes liberating hydrogen. Coadsorbed oxygen or sulfate promote propene combustion, with adsorbed sulfoxy species the most efficient oxidant. The chemistry of these alumina-supported Pt clusters shows a general evolution from small polycrystalline clusters to larger clusters with properties akin to low-index, Pt single-crystal surfaces.
Resumo:
Non-doped and La-doped ZnTiO3 nanoparticles were successfully synthesized via a modified sol–gel method. The synthesized nanoparticles were structurally characterized by PXRD, UV-vis DRS, FT-IR, SEM-EDS, TEM, Raman and photoluminescence spectroscopy. The results show that doping of La into the framework of ZnTiO3 has a strong influence on the physico-chemical properties of the synthesized nanoparticles. XRD results clearly show that the non-doped ZnTiO3 exhibits a hexagonal phase at 800 °C, whereas the La-doped ZnTiO3 exhibits a cubic phase under similar experimental conditions. In spite of the fact that it has a large ionic radius, the La is efficiently involved in the evolution process by blocking the crystal growth and the cubic to hexagonal transformation in ZnTiO3. Interestingly the absorption edge of the La-doped ZnTiO3 nanoparticles shifted from the UV region to the visible region. The photocatalytic activity of the La-doped ZnTiO3 nanoparticles was evaluated for the degradation of Rhodamine B under sunlight irradiation. The optimum photocatalytic activity was obtained for 2 atom% La-doped ZnTiO3, which is much higher than that of the non-doped ZnTiO3 as well as commercial N-TiO2. A possible mechanism for the degradation of Rhodamine B over La-doped ZnTiO3 was also discussed by trapping experiments. More importantly, the reusability of these nanoparticles is high. Hence La-doped ZnTiO3 nanoparticles can be used as efficient photocatalysts for environmental applications.
Resumo:
In this study, we report a facile polymeric citrate strategy for the synthesis of Cr,La-codoped SrTiO3 nanoparticles. The synthesized samples were well characterized by various analytical techniques. The UV-vis DRS studies reveal that the absorption edge shifts towards the visible light region after doping with Cr, which is highly beneficial for absorbing the visible light in the solar spectrum. More attractively, codoping with La exhibits greatly enhanced photocatalytic activity for the degradation of Rhodamine B under sunlight irradiation. The optimum photocatalytic activity at 1 atom% of Cr,La-codoped SrTiO3 nanoparticles is almost 6 times higher than that of pure SrTiO3 nanoparticles and 3 times higher than that of Cr-doped SrTiO3 nanoparticles. The high photocatalytic performance in the present photocatalytic system is due to codoping with La, which acts as a most effective donor for stabilizing Cr3+ in Cr,La-codoped SrTiO3 nanoparticles. More importantly, the synthesized photocatalysts possess high reusability. A proposed mechanism for the enhanced photocatalytic activity of Cr,La-codoped SrTiO3 nanoparticles was also investigated by trapping experiments. Therefore, our results not only demonstrate the highly efficient visible light photocatalytic activity of the Cr,La-codoped SrTiO3 photocatalyst, but also enlighten the codoping strategy in the design and development of advanced photocatalytic materials for energy and environmental applications.
Resumo:
In this study we investigate salt effects on bundle formation of carbon nanotubes (CNTs) dispersed in an organic solvent, N-methyl-2-pyrrolidone (NMP). Addition of NaI salt leads to self-assembly of CNTs into well-recognizable bundles. It is possible to control the size of the CNT bundles by varying the salt concentration. © the Owner Societies 2011.
Resumo:
ZnO nanomaterials with controlled size, shape and surface chemistry are required for applications in diverse areas, such as optoelectronics, photocatalysis, biomedicine and so on. Here, we report on ZnO nanostructures with rod-like and spherical shapes prepared via laser ablation in liquid using a laser with millisecond-long pulses. By changing laser parameters (such as pulse width and peak power), the size or aspect ratio of such nanostructures could be tuned. The surface chemistry and defects of the products were also strongly affected by applied laser conditions. The preparation of different structures is explained by the intense heating of liquid media caused by millisecond-long pulses and secondary irradiation of already-formed nanostructures.
Resumo:
Large-scale introduction of Organic Solar Cells (OSCs) onto the market is currently limited by their poor stability in light and air, factors present in normal working conditions for these devices. Thus, great efforts have to be undertaken to understand the photodegradation mechanisms of their organic materials in order to find solutions that mitigate these effects. This study reports on the elucidation of the photodegradation mechanisms occurring in a low bandgap polymer, namely, Si-PCPDTBT (poly[(4,4′-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole)-2,6-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadiazole)-5,5′-diyl]). Complementary analytical techniques (AFM, HS-SPME-GC-MS, UV-vis and IR spectroscopy) have been employed to monitor the modification of the chemical structure of the polymer upon photooxidative aging and the subsequent consequences on its architecture and nanomechanical properties. Furthermore, these different characterization techniques have been combined with a theoretical approach based on quantum chemistry to elucidate the evolution of the polymer alkyl side chains and backbone throughout exposure. Si-PCPDTBT is shown to be more stable against photooxidation than the commonly studied p-type polymers P3HT and PCDTBT, while modeling demonstrated the benefits of using silicon as a bridging atom in terms of photostability. (Figure Presented).
Resumo:
We present results of the direct observation, in real-space, of the phase separation of high molecular weight polystyrene and poly(methyl methacrylate) from ortho-xylene using our newly developed technique of high speed stroboscopic interference microscopy. Taking a fixed concentration (3 wt % in o-xylene) at a fixed composition (1:4 by weight) and by varying the rotational rate during the spin-coating process, we are able to observe the formation of a range of phase separated bicontinuous morphologies of differing length-scales. Importantly, we are able to show that the mechanism by which the final phase separated structure is formed is through domain coarsening when rich in solvent, before vitrification occurs and fixes the phase separated structure. The ability to directly observe morphological development offers a route toward controlling the length-scale of the final morphology through process control and in situ feedback, from a single stock solution. © 2013 Wiley Periodicals, Inc.