8 resultados para photo period
em Aston University Research Archive
Resumo:
The distinct behaviour of femtosecond laser inscribed long period gratings, with a non-uniform index perturbation within the optical fibre core, has been studied experimentally. The non-uniform laser-induced perturbation results in light coupling from the core mode to a greater number of cladding modes than is the case with their UV laser inscribed counterparts, and this is made evident from the surrounding refractive index (SRI) grating response. Femtosecond inscribed long period gratings are shown to simultaneously couple to multiple sets of cladding modes. A 400μm LPG is shown to result in attenuation peaks that have both blue and red wavelength shifts over a 1250nm to 1700nm wavelength range. This gives rise to SRI sensitivities far greater than anything achievable by monitoring a single attenuation peak. The maximum sensitivity produced by monitoring a single attenuation peak was 1106nm/RIU, whereas monitoring opposing wavelength shifts resulted in a significantly improved sensitivity of 1680nm/RIU. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
A long-period grating (LPG) was written into a progressive three-layered single-mode fiber that was embedded into a flexible platform as a curvature sensor. The spectral location and profile of the LPGs were unaltered after implantation in the platform. The curvature sensitivity was 3.747 nm m with a resolution of ± 1.1 × 10-2 m-1. The bend sensor is intended to be part of a respiratory monitoring system and was tested on a resuscitation training manikin. © 2003 society of Photo-Optical Instrumentation Engineers.
Apodisation of photo-induced waveguide gratings using double-exposure with complementary duty cycles
Resumo:
We present a novel apodisation scheme for photo-induced waveguide gratings. The apodisation is implemented with double exposures that have reversely varying duty cycles. We have successfully applied the proposed scheme to remove the sidelobes of long period gratings (LPGs). We also observed for the first time super strong sidelobes in LPGs when creating them with only a single varying-duty-cycle exposure. The strong sidelobes can be well explained with a Mach-Zehnder interference model.
Resumo:
A variety of iron compounds containing vinyl or thiol functional groups (used as photoactivators) have been synthesised and some of these were successfully bound to both polyethylene and polypropylene backbones during processing in the presence of peroxide and interlinking agent. Concentrates (masterbatches) of the photoactivators in PP and PE were prepared and the pro-oxidant effect of the diluted masterbatches in absence and presence of an antioxidant was evaluated. An antioxidant photoactivator (FeDNC ) was found to sensitise the photoactivity of pro-oxidants (Metone A / Metone M) whereas an antioxidant (ZnDNC) was found to stabilise the polymer (PP and PE) containing both of these combinations. It was observed that the lower concentration of FeDNC sensitises the stability of the polymer containing very small concentration of NiDNC whereas higher concentration of FeDNC stabilises the polymer (LDPE) containing same amount of NiDNC compared to FeDNC alone. The photostability of unstabilised PP containing FeAc could be varied by varying the concentration of ZnDEC. Both the induction period and the UV - life time of the polymer increased by increasing concentration of ZnDEC. It is suggested that ligand exchange reaction may take place between FeAc and ZnDNC. A polymer bound UV stabiliser (HAEB) and a thermal stabiliser (DBBA) were used with a non extractable photoactivator (FeAc) in PP. Small concentrations of the stabilisers (HAEB and DBBA) in combination with the photoactivator (FeAc) sensitise the polymer. The antioxidant present in commercial polymer (LDPE and PP) was found to be of a hindered phenol type, which was found to antagonise with ZnDNC when used in combination with the photoactivators.
Apodisation of photo-induced waveguide gratings using double-exposure with complementary duty cycles
Resumo:
We present a novel apodisation scheme for photo-induced waveguide gratings. The apodisation is implemented with double exposures that have reversely varying duty cycles. We have successfully applied the proposed scheme to remove the sidelobes of long period gratings (LPGs). We also observed for the first time super strong sidelobes in LPGs when creating them with only a single varying-duty-cycle exposure. The strong sidelobes can be well explained with a Mach-Zehnder interference model.
Resumo:
A series of in-line curvature sensors on a garment are used to monitor the thoracic and abdominal movements of a human during respiration. These results are used to obtain volumetric tidal changes of the human torso in agreement with a spirometer used simultaneously at the mouth. The curvature sensors are based on long-period gratings (LPGs) written in a progressive three-layered fiber to render the LPGs insensitive to the refractive index external to the fiber. A curvature sensor consists of the fiber long-period grating laid on a carbon fiber ribbon, which is then encapsulated in a low-temperature curing silicone rubber. The sensors have a spectral sensitivity to curvature, d lambda/dR from similar to 7-nm m to similar to 9-nm m. The interrogation technique is borrowed from derivative spectroscopy and monitors the changes in the transmission spectral profile of the LPG's attenuation band due to curvature. The multiplexing of the sensors is achieved by spectrally matching a series of distributed feedback (DFB) lasers to the LPGs. The versatility of this sensing garment is confirmed by it being used on six other human subjects covering a wide range of body mass indices. Just six fully functional sensors are required to obtain a volumetric error of around 6%. (C) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A series of in-line curvature sensors on a garment are used to monitor the thoracic and abdominal movements of a human during respiration. These results are used to obtain volumetric tidal changes of the human torso in agreement with a spirometer used simultaneously at the mouth. The curvature sensors are based on long-period gratings (LPGs) written in a progressive three-layered fiber to render the LPGs insensitive to the refractive index external to the fiber. A curvature sensor consists of the fiber long-period grating laid on a carbon fiber ribbon, which is then encapsulated in a low-temperature curing silicone rubber. The sensors have a spectral sensitivity to curvature, dλ/dR from ∼7-nm m to ∼9-nm m. The interrogation technique is borrowed from derivative spectroscopy and monitors the changes in the transmission spectral profile of the LPG's attenuation band due to curvature. The multiplexing of the sensors is achieved by spectrally matching a series of distributed feedback (DFB) lasers to the LPGs. The versatility of this sensing garment is confirmed by it being used on six other human subjects covering a wide range of body mass indices. Just six fully functional sensors are required to obtain a volumetric error of around 6%. © 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We present data on the development a new type of optical fibre polariser and the characterisation of its wavelength properties. The device is fashioned using a two step process. Firstly, a standard UV long period grating (LPG) with a period of 330μm is inscribed into hydrogenated SMF-28, followed by femtosecond laser ablation of a groove parallel to the fibre axis. The UV inscribed LPGs have inherently low birefringence. However, the removal of the cladding layer parallel to the location of the LPG within the fibre core (as a result the ablation) modifies the cladding modes that couple with the LPG. Furthermore, the groove breaks the fibre symmetry introducing a non-uniform stress profile across the fibre cross section leading to significant birefringence. We show that increasing the depth of the groove increases the birefringence, and this behaviour coupled with the ability to control the wavelength location of the LPGs attenuations peaks results in a polariser able to operate at almost any wavelength and birefringence. The maximum birefringence reported here as polarisation mode splitting was approximately 39±0.1nm with a polarisation loss of 10dB. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).