9 resultados para phosphotransferase inhibitor
em Aston University Research Archive
Resumo:
Aqueous semi-solid polymeric gels, such as those based on hydroxyethylcellulose (HEC) and polyacrylic acid (e.g. Carbopol®), have a long history of use in vaginal drug delivery. However, despite their ubiquity, they often provide sub-optimal clinical performance, due to poor mucosal retention and limited solubility for poorly water-soluble actives. These issues are particularly pertinent for vaginal HIV microbicides, since many lead candidates are poorly water-soluble and where a major goal is the development of a coitally independent, once daily gel product. In this study, we report the use of a non-aqueous silicone elastomer gel for vaginal delivery of the HIV-1 entry inhibitor maraviroc. In vitro rheological, syringeability and retention studies demonstrated enhanced performance for silicone gels compared with a conventional aqueous HEC gel, while testing of the gels in the slug model confirmed a lack of mucosal irritancy. Pharmacokinetic studies following single dose vaginal administration of a maraviroc silicone gel in rhesus macaques showed higher and sustained MVC levels in vaginal fluid, vaginal tissue and plasma compared with a HEC gel containing the same maraviroc loading. The results demonstrate that non-aqueous silicone gels have potential as a formulation platform for coitally independent vaginal HIV microbicides.
Resumo:
Raf kinase inhibitory protein (RKIP) is a physiologic inhibitor of c-RAF kinase and nuclear factor ?B signaling that represses tumor invasion and metastasis. Glycogen synthase kinase-3ß (GSK3ß) suppresses tumor progression by downregulating multiple oncogenic pathways including Wnt signaling and cyclin D1 activation. Here, we show that RKIP binds GSK3 proteins and maintains GSK3ß protein levels and its active form. Depletion of RKIP augments oxidative stress-mediated activation of the p38 mitogen activated protein kinase, which, in turn, inactivates GSK3ß by phosphorylating it at the inhibitory T390 residue. This pathway de-represses GSK3ß inhibition of oncogenic substrates causing stabilization of cyclin D, which induces cell-cycle progression and ß-catenin, SNAIL, and SLUG, which promote epithelial to mesenchymal transition. RKIP levels in human colorectal cancer positively correlate with GSK3ß expression. These findings reveal the RKIP/GSK3 axis as both a potential therapeutic target and a prognosis-based predictor of cancer progression.
Resumo:
Objectives: This study measured and compared the pharmacokinetics of CMPD167, a small molecule antiretroviral CCR5 inhibitor with potential as an HIV microbicide, following vaginal, rectal and oral administration in rhesus macaques. Methods: Avaginal hydroxyethylcellulose (HEC) gel, a rectal HEC gel, a silicone elastomer matrix-type vaginal ring and an oral solution, each containing CMPD167, were prepared and administered to rhesus macaques pretreated with Depo-Provera. CMPD167 concentrations in vaginal fluid, vaginal tissue (ring only), rectal fluid and blood plasma were quantified by HPLC-mass spectrometry. Results: CMPD167 concentrations measured in rectal fluid, vaginal fluid and blood plasma were highly dependent on both the route of administration and the formulation type. Although rectal and vaginal fluid concentrations were highest when CMPD167 was administered locally (via either gel or ring), lower concentrations of the drug were also measured in these compartments following administration at the remote mucosal site or orally. CMPD167 levels in the vaginal and rectal fluid following oral administration were relatively low compared with local administration. Conclusions: The study provides clear evidence for vaginal-rectal and rectal-vaginal drug transfer pathways and suggests that oral pre-exposure prophylaxis with CMPD167 may be less efficacious at preventing sexual transmission of HIV-1 than topically applied products. ©The Author 2013.
Resumo:
Background:Memantine and cholinesterase inhibitors (ChEI) have distinct pharmacological actions, and interest in the use of combination therapy for Alzheimer's disease (AD) is increasing. Objective: To assess the available data on the use of memantine–ChEI combination and to develop evidence-based recommendations.Method: A systematic literature review with detailed discussion of the current evidence base. Results: Available data are limited: five studies of which two were randomized, double-blind, placebo-controlled trials. One study indicated that memantine–ChEI combination is not significantly more effective than placebo–ChEI in mild to moderate AD, but data were published in abstract and poster form only. A second study indicated that the memantine–ChEI combination is significantly more effective than placebo–ChEI in moderate to severe AD. The calculated effect sizes of 0.36 on cognition and 0.12 on function, which were the primary outcomes, were small, indicating a clinically minimal effect on cognition and no effect on function. No data are available on whether combination treatment is more effective than memantine monotherapy. Conclusion: The available data do not justify the use of combination therapy. Future studies should include three arms (memantine–placebo, placebo–ChEI, and memantine–ChEI), be of an adequate size and duration, and use pragmatic measures. Clinicians should have full access to data from any future trials.
Resumo:
The resolution of inflammation is dependent on recognition and phagocytic removal of apoptotic cells by macrophages. Receptors for apoptotic cells are sensitive to degradation by human neutrophil elastase (HNE). We show in the present study that HNE cleaves macrophage cell surface CD14 and in so doing, reduces phagocytic recognition of apoptotic lymphocytic cells (Mutu 1). Using an improved method of adenovirus-mediated transfection of macrophages with the HNE inbibitor elafin, we demonstrate that elafin overexpression prevents CD14 cleavage and restores apoptotic cell recognition by macrophages. This approach of genetic modification of macrophages could be used to restore apoptotic cell recognition in inflammatory conditions. (C) 2004 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
The endothelium is the primary barrier to leukocyte recruitment at sites of inflammation. Neutrophil recruitment is directed by transendothelial gradients of IL-8 that, in vivo, are bound to the endothelial cell surface. We have investigated the identity and function of the binding site(s) in an in vitro model of neutrophil transendothelial migration. In endothelial culture supernatants, IL-8 was detected in a trimolecular complex with heparan sulfate and syndecan-1. Constitutive shedding of IL-8 in this form was increased in the presence of a neutralizing Ab to plasminogen activator inhibitor-1 (PAI-1), indicating a role for endothelial plasminogen activator in the shedding of IL-8. Increased shedding of IL-8/heparan sulfate/syndecan-1 complexes was accompanied by inhibition of neutrophil transendothelial migration, and aprotinin, a potent plasmin inhibitor, reversed this inhibition. Platelets, added as an exogenous source of PAI-1, had no effect on shedding of the complexes or neutrophil migration. Our results indicate that IL-8 is immobilized on the endothelial cell surface through binding to syndecan-1 ectodomains, and that plasmin, generated by endothelial plasminogen activator, induces the shedding of this form of IL-8. PAI-1 appears to stabilize the chemoattractant form of IL-8 at the cell surface and may represent a therapeutic target for novel anti-inflammatory strategies.
Resumo:
Focal points: A systematic review of the use of proton pump inhibitors was conducted among patients undergoing diagnostic fibreoptic endoscopic examination of the upper gastrointestinal tract during the period July 2001 to February 2002 inclusive A total of 2,557 patients received a PPI following endoscopy and healing doses were prescribed to 75.3 per cent of these patients An “unknown indication” was stated as a diagnosis in 958 patients (37.5 per cent) of patients studied Although endoscopic diagnosis does not appear possible in all cases, the present study demonstrates that NICE guidance to employ the lowest appropriate dose of PPI is followed
Resumo:
We have previously identified a phosphorothioate oligonucleotide (PS-ODN) that inhibited epidermal growth factor receptor tyrosine kinase (TK) activity both in cell fractions and in intact A431 cells. Since ODN-based TK inhibitors may have anti-cancer applications and may also help understand the non-antisense mediated effects of PS-ODNs, we have further studied the sequence and chemistry requirements of the parent PS-ODN (sequence: 5′-GGA GGG TCG CAT CGC-3′) as a sequence-dependent TK inhibitor. Sequence deletion and substitution studies revealed that the 5′-terminal GGA GGG hexamer sequence in the parent compound was essential for anti-TK activity in A431 cells. Site-specific substitution of any G with a T in this 5′-terminal motif within the parent compound caused a significant loss in anti-TK activity. The fully PS-modified hexameric motif alone exhibited equipotent activity as the parent 15-mer whereas phosphodiester (PO) or 2′-O-methyl-modified versions of this motif had significantly reduced anti-TK activity. Further, T substitutions within the two 5′-terminal G residues of the hexameric PS-ODN to produce a sequence, TTA GGG, representing the telomeric repeats in human chromosomes, also did not exhibit a significant anti-TK activity. Multiple repeats of the active hexameric motif in PS-ODNs resulted in more potent inhibitors of TK activity than the parent ODN. These results suggested that PS-ODNs, but not PO or 2′-O-methyl modified ODNs, containing the GGA GGG motif can exert potent anti-TK activity which may be desirable in some anti-tumor applications. Additionally, the presence of this previously unidentified motif in antisense PS-ODN constructs may contribute to their biological effects in vitro and in vivo and should be accounted for in the design of the PS-modified antisense ODNs. © 2002 Published by Elsevier Science Inc.
Resumo:
Background: We and others have identified the aldo-keto reductase AKR1C3 as a potential drug target in prostate cancer, breast cancer and leukaemia. As a consequence, significant effort is being invested in the development of AKR1C3-selective inhibitors. Methods: We report the screening of an in-house drug library to identify known drugs that selectively inhibit AKR1C3 over the closely related isoforms AKR1C1, 1C2 and 1C4. This screen initially identified tetracycline as a potential AKR1C3-selective inhibitor. However, mass spectrometry and nuclear magnetic resonance studies identified that the active agent was a novel breakdown product (4-methyl(de-dimethylamine)-tetracycline (4-MDDT)). Results: We demonstrate that, although 4-MDDT enters AML cells and inhibits their AKR1C3 activity, it does not recapitulate the anti-leukaemic actions of the pan-AKR1C inhibitor medroxyprogesterone acetate (MPA). Screens of the NCI diversity set and an independently curated small-molecule library identified several additional AKR1C3-selective inhibitors, none of which had the expected anti-leukaemic activity. However, a pan AKR1C, also identified in the NCI diversity set faithfully recapitulated the actions of MPA. Conclusions: In summary, we have identified a novel tetracycline-derived product that provides an excellent lead structure with proven drug-like qualities for the development of AKR1C3 inhibitors. However, our findings suggest that, at least in leukaemia, selective inhibition of AKR1C3 is insufficient to elicit an anticancer effect and that multiple AKR1C inhibition may be required. © 2014 Cancer Research UK. All rights reserved.