4 resultados para phosphoethanolamine

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enhanced immune responses for DNA and subunit vaccines potentiated by surfactant vesicle based delivery systems outlined in the present study, provides proof of principle for the beneficial aspects of vesicle mediated vaccination. The dehydration-rehydration technique was used to entrap plasmid DNA or subunit antigens into lipid-based (liposomes) or non-ionic surfactant-based (niosomes) dehydration-rehydration vesicles (DRV). Using this procedure, it was shown that both these types of antigens can be effectively entrapped in DRV liposomes and DRV niosomes. The vesicle size of DRV niosomes was shown to be twice the diameter (~2µm) of that of their liposome counterparts. Incorporation of cryoprotectants such as sucrose in the DRV procedure resulted in reduced vesicle sizes while retaining high DNA incorporation efficiency (~95%). Transfection studies in COS 7 cells demonstrated that the choice of cationic lipid, the helper lipid, and the method of preparation, all influenced transfection efficiency indicating a strong interdependency of these factors. This phenomenon has been further reinforced when 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE): cholesteryl 3b- [N-(N’ ,N’ -dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol)/DNA complexes were supplemented with non-ionic surfactants. Morphological analysis of these complexes using transmission electron microscopy and environmental scanning electron microscopy (ESEM) revealed the presence of heterogeneous structures which may be essential for an efficient transfection in addition to the fusogenic properties of DOPE. In vivo evaluation of these DNA incorporated vesicle systems in BALB/c mice showed weak antibody and cell-mediated immune (CMI) responses. Subsequent mock challenge with hepatitis B antigen demonstrated that, 1-monopalmitoyl glycerol (MP) based DRV, is a more promising DNA vaccine adjuvant. Studying these DRV systems as adjuvants for the Hepatitis B subunit antigen (HBsAg) revealed a balanced antibody/CMI response profile on the basis of the HBsAg specific antibody and cytokine responses which were higher than unadjuvated antigen. The effect of addition of MP, cholesterol and trehalose 6,6’-dibehenate (TDB) on the stability and immuno-efficacy of dimethyldioctadecylammonium bromide (DDA) vesicles was investigated. Differential scanning calorimetry showed a reduction in transition temperature of DDA vesicles by ~12°C when incorporated with surfactants. ESEM of MP based DRV system indicated an increased vesicle stability upon incorporation of antigen. Adjuvant activity of these systems tested in C57BL/6j mice against three subunit antigens i.e., mycobacterial fusion protein- Ag85B-ESAT-6, and two malarial antigens - merozoite surface protein-1, (MSP1), and glutamate rich protein, (GLURP) revealed that while MP and DDA based systems induced comparable antibody responses, DDA based systems induced powerful CMI responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a clinical need for a more effective vaccine against hepatitis B, and in particular vaccines that may be suitable for therapeutic administration. This study assesses the potential of cationic surfactant vesicle based formulations using two agents; the cationic amine containing [N-(N′,N′-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) or dimethyl dioctadecylammonium bromide (DDA) with hepatitis B surface antigen (HBsAg). Synthetic mycobacterial cord factor, trehalose 6,6′-dibehenate (TDB) has been used as an adjuvant and the addition of 1-monopalmitoyl glycerol (C16:0) (MP) and cholesterol (Chol) to DDA-TDB is assessed for its potential to facilitate formation of dehydration-rehydration vesicles (DRV) at room temperature, and the effect of this on immune responses. A DRV formulation is directly compared to an adsorbed formulation of the same composition and preparation protocol (MP:dioleoyl phosphoethanolamine (DOPE):Chol:DC-Chol) and the direct substitution of MP with phosphatidylcholine (PC) is also compared in DRV antigen-entrapped formulations. MP and Chol were shown to facilitate the use of DDA-TDB in DRV formulations prepared at room temperature, whilst there was marginal alteration of immunogenicity (a reduction in HBsAg-specific IL-2). The HBsAg adsorbed DRV formulation was not significantly different from the HBsAg entrapped DRV formulation. Overall, DDA formulations incorporating TDB showed markedly increased antigen specific splenocyte proliferation and elicited cytokine production concomitant with a strong T cell driven response, delineating formulations that may be useful for further evaluation of their clinical potential. © 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cationic liposomes have been extensively explored for their efficacy in delivering nucleic acids, by offering the ability to protect plasmid DNA against degradation, promote gene expression and, in the case of DNA vaccines, induce both humoural and cellular immune responses. DNA vaccines may also offer advantages in terms of safety, but they are less effective and need an adjuvant to enhance their immunogenicity. Therefore, cationic liposomes can be utilised as delivery systems and/or adjuvants for DNA vaccines to stimulate stronger immune responses. To explore the role of liposomal systems within plasmid DNA delivery, parameters such as the effect of lipid composition, method of liposome preparation and presence of electrolytes in the formulation were investigated in characterisation studies, in vitro transfection studies and in vivo biodistribution and immunisation studies. Liposomes composed of 1,2-dioleoyl-sn-glycero 3-phosphoethanolamine (DOPE) in combination with 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or 1,2-stearoyl-3- trimethylammonium-propane (DSTAP) were prepared by the lipid hydration method and hydrated in aqueous media with or without presence of electrolytes. Whilst the in vitro transfection efficiency of all liposomes resulted to be higher than Lipofectin, DSTAP-based liposomes showed significantly higher transfection efficiency than DOTAP-based formulations. Furthermore, upon intramuscular injection of liposomal DNA vaccines, DSTAP-based liposomes showed a significantly stronger depot effect at the injection site. This could explain the result of heterologous immunisation studies, which revealed DSTAP-based liposomal vaccines induce stronger immune responses compared to DOTAP-based formulations. Previous studies have shown that having more liposomally associated antigen at the injection site would lead to more drainage of them into the local lymph nodes. Consequently, this would lead to more antigens being presented to antigen presenting cells, which are circulating in lymph nodes, and this would initiate a stronger immune response. Finally, in a comparative study, liposomes composed of dimethyldioctadecylammonium bromide (DDA) in combination with DOPE or immunostimulatory molecule of trehalose 6,6-dibehenate (TDB) were prepared and investigated in vitro and in vivo. Results showed that although DDA:TDB is not able to transfect the cells efficiently in vitro, this formulation induces stronger immunity compared to DDA:DOPE due to the immunostimulatory effects of TDB. This study demonstrated, while the presence of electrolytes did not improve immune responses, small unilamellar vesicle (SUV) liposomes induced stronger humoural immune responses compared to dehydration rehydration vesicle (DRV) liposomes. Moreover, lipid composition was shown to play a key role in in vitro and in vivo behaviour of the formulations, as saturated cationic lipids provided stronger immune responses compared to unsaturated lipids. Finally, heterologous prime/boost immunisation promoted significantly stronger immune responses compared to homologous vaccination of DNA vaccines, however, a single immunisation of subunit vaccine provoked comparable levels of immune response to the heterologous regimen, suggesting more immune efficiency for subunit vaccines compared to DNA vaccines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whilst there is a large body of evidence looking at the design of cationic liposomes as transfection agents, correlates of formulation to function remain elusive. In this research, we investigate if lipid packaging can give further insights into transfection efficacy. DNA lipoplexes composed of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) or 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) in combination with 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or 1,2-stearoyl-3-trimethylammonium-propane (DSTAP) were prepared by the lipid hydration method. Each of the formulations was prepared by hydration in dH2O or phosphate buffer saline (PBS) to investigate the effect of buffer salts on lipoplex physicochemical characteristics and in vitro transfection. In addition, Langmuir monolayer studies were performed to investigate any possible correlation between lipid packaging and liposome attributes. Using PBS, rather than dH2O, to prepare the lipoplexes increased the size of vesicles in most of formulations and resulted in variation in transfection efficacies. However, one combination of lipids (DSPE:DOTAP) could not form liposomes in PBS, whilst the DSPE:DSTAP combination could not form liposomes in either aqueous media. Monolayer studies demonstrated saturated lipid combinations offered dramatically closer molecular packing compared to the other combinations which could suggest why this lipid combination could not form vesicles. Of the lipoplexes prepared, those formulated with DSTAP showed higher transfection efficacy, however, the effect of buffer on transfection efficiency was formulation dependent. © 2011 by the authors; licensee MDPI, Basel, Switzerland.