11 resultados para pharmaceutical R
em Aston University Research Archive
Resumo:
The paper applies the GVC framework to analyse the organisational and geographical reconfiguration of the global R&D function of leading US and European pharmaceutical MNCs. Though pharmaceutical MNCs have been outsourcing clinical trial activities since the mid-1990s, the outsourcing of discovery research tasks is a phenomenon of the 2000s (Ramirez 2013). Moreover, in the context of a crisis of R&D productivity and increasing pressure from shareholders, a number of US and European pharmaceutical MNCs are breaking up their R&D function in an attempt to increase flexibility and reduce risk as well as costs and are thereby restructuring the global architecture of their R&D function. This break-up, or unbundling (Sako 2006), of the R&D function is particularly interesting given the prevalence of market failure in innovation (Howells et al 2008), the non-modular nature of the R&D process in this industry (Pisano 2006) and the strategic important of this activity to the core competence and long-term competitive advantage of firms in this sector. The focus of this paper is on the outsourcing of R&D activities to Chinese and Indian independently-owned contract research organisations (CROs) and the way these firms are becoming integrated as service providers into the global R&D function (or R&D value chain) of pharmaceutical MNCs. Above all the paper is concerned with the development of capabilities of CROs from these two countries and the dynamics of upgrading in GVCs in knowledge-intensive functions. The paper therefore discusses the role of both knowledge flows within global pharmaceutical R&D value chains as well as national innovation systems on the development of capabilities of Chinese and Indian CROs. Our analysis is based on data from semi-structured interviews collected from senior R&D managers from a sample of ten US and European pharmaceutical MNCs and owners and senior R&D managers from five Chinese and five Indian CROs who are providing research services to MNCs in this industry. We discuss the emergence of R&D outsourcing in this industry and the nature and mechanisms of knowledge flows within R&D value chains. The embeddedness of CROS in the national innovation systems of their home countries is also discussed.
Resumo:
The pharmaceutical qualities of 34 ceftriaxone generic products were compared with Rocephin as the reference standard. Quality standards specified in the European and US Pharmacopoeias were violated on 18 occasions, including those for sterility (4 products) and impurities (5 products). All 34 generics tested failed to meet Roche specifications for Rocephin, with 100 contraventions of the Roche Pharmaceutical standards. The most common failures amongst generic drug products were clarity of solution (30 products) and presence of thiotriazinone (33 products).
Resumo:
The objective of the work described was to identify and synthesize a range of biodegradable hypercoiling or hydrophobically associating polymers to mimic natural apoproteins, such as those found in lung surfactant or plasma apolipoproteins. Stirred interfacial polymerization was used to synthesize potentially biodegradable aromatic polyamides (Mw of 12,000-26,000) based on L-Iysine, L-Iysine ethyl ester, L-ornithine and DL-diaminopropionic acid, by reaction with isophthaloyl chloride. A similar technique was used to synthesize aliphatic polyamides based on L-Iysine ethyl ester and either adipoyl chloride or glutaryl chloride resulting in the synthesis of poly(lysine ethyl ester adipamide) [PLETESA] or poly(lysine ethyl ester glutaramide) (Mw of 126,000 and 26,000, respectively). PLETESA was found to be soluble in both polar and non-polar solvents and the hydrophobic/hydrophilic balance could be modified by partial saponification (66-75%) of the ethyl ester side chains. Surface or interfacial tension/pH profiles were used to assess the conformation of both the poly(isophthalamides) and partially saponified PLETESA in aqueous solution. The results demonstrated that a loss of charge from the polymer was accompanied by an initial fall in surface activity, followed by a rise in activity, and ultimately, by polymer precipitation. These observations were explained by a collapse of the polymer chains into non-surface active intramolecular coils, followed by a transition to an amphipathic conformation, and finally to a collapsed hydrophobe. 2-Dimensional NMR analysis of polymer conformation in polar and non-polar solvents revealed intramolecular associations between the hydrophobic groups within partially saponified PLETESA. Unsaponified PLETESA appeared to form a coiled structure in polar solvents where the ethyl ester side chains were contained within the polymer coil. The implications of the secondary structure of PLETESA and potential biomedical applications are discussed.
Resumo:
This work describes the fabrication of nanospheres from a range of novel polyhydroxyalkanoates supplied by Monsanto, St Louis, Missouri, USA for the delivery of selected actives of both pharmaceutical and agricultural interest. Initial evaluation of established microsphere and nanosphere fabrication techniques resulted in the adoption and optimisation of a double sonication solvent evaporation method involving the synperonic surfactant F68. Nanospheres could be consistently generated with this method. Studies on the incorporation and release of the surrogate protein Bovine Serum Albumin V demonstrated that BSA could be loaded with between 10-40% w/w BSA without nanosphere destabilisation. BSA release from nanospheres into Hanks Balanced Salts Solution, pH 7.4, could be monitored for up to 28 days at 37°C. The incorporation and release of the Monsanto actives - the insecticide Admire® ({ 1-[(6-chloro-3-pyridinyl)methyIJ-N-nitro-2-imidazolidinimine}) and the plant growth hormone potassium salt Gibberellic acid (GA3K) from physico-chemically characterised polymer nanospheres was monitored for up to 37 days and 28 days respectively, at both 4°C and 23°C. Release data was subsequently fitted to established kinetic models to elaborate the possible mechanisms of release of actives from the nanospheres. The exposure of unloaded nanospheres to a range of physiological media and rural rainwater has been used to investigate the role polymer biodegradation by enzymatic and chemical means might play in the in vivo release of actives and agricultural applications. The potential environmental biodegradation of Monsanto polymers has been investigated using a composting study (International Standard ISO/FDIS 14855) in which the ultimate aerobic biodegradation of the polymers has been monitored by the analysis of evolved carbon dioxide. These studies demonstrated the potential of the polymers for use in the environment, for example as a pesticide delivery system.
Resumo:
A history of government drug regulation and the relationship between the pharmaceutical companies in the U.K. and the licensing authority is outlined. Phases of regulatory stringency are identified with the formation of the Committees on Safety of Drugs and Medicines viewed as watersheds. A study of the impact of government regulation on industrial R&D activities focuses on the effects on the rate and direction of new product innovation. A literature review examines the decline in new chemical entity innovation. Regulations are cited as a major but not singular cause of the decline. Previous research attempting to determine the causes of such a decline on an empirical basis is given and the methodological problems associated with such research are identified. The U.K. owned sector of the British pharmaceutical industry is selected for a study employing a bottom-up approach allowing disaggregation of data. A historical background to the industry is provided, with each company analysed or a case study basis. Variations between companies regarding the policies adopted for R&D are emphasised. The process of drug innovation is described in order to determine possible indicators of the rate and direction of inventive and innovative activity. All possible indicators are considered and their suitability assessed. R&D expenditure data for the period 1960-1983 is subsequently presented as an input indicator. Intermediate output indicators are treated in a similar way and patent data are identified as a readily-available and useful source. The advantages and disadvantages of using such data are considered. Using interview material, patenting policies for most of the U.K. companies are described providing a background for a patent-based study. Sources of patent data are examined with an emphasis on computerised systems. A number of searches using a variety of sources are presented. Patent family size is examined as a possible indicator of an invention's relative importance. The patenting activity of the companies over the period 1960-1983 is given and the variation between companies is noted. The relationship between patent data and other indicators used is analysed using statistical methods resulting in an apparent lack of correlation. An alternative approach taking into account variations in company policy and phases in research activity indicates a stronger relationship between patenting activity, R&D Expenditure and NCE output over the period. The relationship is not apparent at an aggregated company level. Some evidence is presented for a relationship between phases of regulatory stringency, inventive and innovative activity but the importance of other factors is emphasised.
Resumo:
Salt formation has extensively been studied as a strategy to improve drug solubility but it has not been explored as a strategy to improve mechanical properties. A better understanding of which factors of the solid state can have an influence in the mechanical properties of pharmaceutical powders can help to optimise and reduce cost of tablet manufacturing. The aim of this study was to form different series of amine salts of flurbiprofen, gemfibrozil and diclofenac and to establish predictive relationships between architectural characteristics and physicochemical and mechanical properties of the salts. For this purpose, three different carboxylic acid drugs were selected: flurbiprofen, gemfibrozil and diclofenac, similar in size but varying in flexibility and shape and three different series of counterions were also chosen: one with increasing bulk and no hydroxyl groups to limit the hydrogen bonding potential; a second one with increasing number of hydroxyl groups and finally a third series, related to the latter in number of hydroxyl groups but with different molecular shape and flexibility. Physico-chemical characterization was performed (DSC, TGA, solubility, intrinsic dissolution rate, particle size, true density) and mechanical properties measured using a compaction replicator. Strained molecular conformations produce weaker compacts as they have higher energy than preferred conformations that usually lie close to energy minimums and oppose plastic deformation. It was observed that slip planes, which correspond to regions of weakest interaction between the planes, were associated with improved plasticity and stronger compacts. Apart from hydrogen bonds, profuse van der Waals forces can result in ineffective slip planes. Salts displaying two-dimensional densely hydrogen bonded layers produced stronger compacts than salts showing one-dimensional networks of non-bonded columns, probably by reducing the attachment energy between layers. When hydrogen bonds are created intramolecularly, it is possible that the mechanical properties are compromised as they do not contribute so much to create twodimensional densely bonded layers and they can force molecules into strained conformations. Some types of hydrogen bonding network may be associated with improved mechanical properties, such as type II, or R (10) 3 4 using graph-set notation, versus type III, or R (12) 4 8 , columns. This work clearly demonstrates the potential of investigating crystal structure-mechanical property relationship in pharmaceutical materials.
Resumo:
The production of composite particles using dry powder coating is a one-step, environmentally friendly, process for the fabrication of particles with targeted properties and favourable functionalities. Diverse functionalities, such flowability enhancement, content uniformity, and dissolution, can be developed from dry particle coating. In this review, we discuss the particle functionalities that can be tailored and the selection of characterisation techniques relevant to understanding their molecular basis. We address key features in the powder blend sampling process and explore the relevant characterisation techniques, focussing on the functionality delivered by dry coating and on surface profiling that explores the dynamics and surface characteristics of the composite blends. Dry particle coating is a solvent- and heat-free process that can be used to develop functionalised particles. However, assessment of the resultant functionality requires careful selection of sensitive analytical techniques that can distinguish particle surface changes within nano and/or micrometre ranges.
Resumo:
The majority of research on the pharmaceutical sector has focused on an overall micro economic, medical oriented welfare issues, whereas the marketing management role of the innovative drug manufacturer has to a large extent been disregarded. Using the case of Turkey, through a series of in-depth interviews with highly innovative companies, other marketing management possibilities are explored based on broader definitions of value and transparency. Our results suggest that pharmaceutical companies as well as the government might have a too narrow focus of value and underestimate the potential long term benefits of a broader approach to marketing management and long term relationships between the various stakeholders.
Resumo:
Introduction: Production of functionalised particles using dry powder coating is a one-step, environmentally friendly process that paves the way for the development of particles with targeted properties and diverse functionalities. Areas covered: Applying the first principles in physical science for powders, fine guest particles can be homogeneously dispersed over the surface of larger host particles to develop functionalised particles. Multiple functionalities can be modified including: flowability, dispersibility, fluidisation, homogeneity, content uniformity and dissolution profile. The current publication seeks to understand the fundamental underpinning principles and science governing dry coating process, evaluate key technologies developed to produce functionalised particles along with outlining their advantages, limitations and applications and discusses in detail the resultant functionalities and their applications. Expert opinion: Dry particle coating is a promising solvent-free manufacturing technology to produce particles with targeted functionalities. Progress within this area requires the development of continuous processing devices that can overcome challenges encountered with current technologies such as heat generation and particle attrition. Growth within this field requires extensive research to further understand the impact of process design and material properties on resultant functionalities.
Resumo:
Grewia gum was extracted from the inner stem bark of Grewia mollis and characterized by several techniques such as gas chromatography (GC), gel permeation chromatography (GPC), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis of the extracted sample. Spectroscopic techniques such as x-ray photoelectron spectroscopy (XPS), fourier-transformed infrared (FT-IR), solid-state nuclear magnetic resonance (NMR), and 1H and 13C NMR techniques were also used to characterize the gum. The results showed that grewia gum is a typically amorphous polysaccharide gum containing glucose, rhamnose, galactose, arabinose and xylose as neutral sugars. It has an average molecular weight of 5925 kDa expressed as the pullulan equivalent. The gum slowly hydrated in water, dispersing and swelling to form a highly viscous dispersion exhibiting pseudoplastic flow behaviour. The polysaccharide gum is thermally stable and may have application as stabilizer or suspending agent in foods, cosmetics and in pharmaceuticals. It may have application as a binder or sustained-release polymer matrix in tablets or granulations. © IPEC-Americas Inc.