8 resultados para phantom bidding, re-auction option, reserve price, internet auctions.
em Aston University Research Archive
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
We introduce self-interested evolutionary market agents, which act on behalf of service providers in a large decentralised system, to adaptively price their resources over time. Our agents competitively co-evolve in the live market, driving it towards the Bertrand equilibrium, the non-cooperative Nash equilibrium, at which all sellers charge their reserve price and share the market equally. We demonstrate that this outcome results in even load-balancing between the service providers. Our contribution in this paper is twofold; the use of on-line competitive co-evolution of self-interested service providers to drive a decentralised market towards equilibrium, and a demonstration that load-balancing behaviour emerges under the assumptions we describe. Unlike previous studies on this topic, all our agents are entirely self-interested; no cooperation is assumed. This makes our problem a non-trivial and more realistic one.
Resumo:
Agent-based technology is playing an increasingly important role in today’s economy. Usually a multi-agent system is needed to model an economic system such as a market system, in which heterogeneous trading agents interact with each other autonomously. Two questions often need to be answered regarding such systems: 1) How to design an interacting mechanism that facilitates efficient resource allocation among usually self-interested trading agents? 2) How to design an effective strategy in some specific market mechanisms for an agent to maximise its economic returns? For automated market systems, auction is the most popular mechanism to solve resource allocation problems among their participants. However, auction comes in hundreds of different formats, in which some are better than others in terms of not only the allocative efficiency but also other properties e.g., whether it generates high revenue for the auctioneer, whether it induces stable behaviour of the bidders. In addition, different strategies result in very different performance under the same auction rules. With this background, we are inevitably intrigued to investigate auction mechanism and strategy designs for agent-based economics. The international Trading Agent Competition (TAC) Ad Auction (AA) competition provides a very useful platform to develop and test agent strategies in Generalised Second Price auction (GSP). AstonTAC, the runner-up of TAC AA 2009, is a successful advertiser agent designed for GSP-based keyword auction. In particular, AstonTAC generates adaptive bid prices according to the Market-based Value Per Click and selects a set of keyword queries with highest expected profit to bid on to maximise its expected profit under the limit of conversion capacity. Through evaluation experiments, we show that AstonTAC performs well and stably not only in the competition but also across a broad range of environments. The TAC CAT tournament provides an environment for investigating the optimal design of mechanisms for double auction markets. AstonCAT-Plus is the post-tournament version of the specialist developed for CAT 2010. In our experiments, AstonCAT-Plus not only outperforms most specialist agents designed by other institutions but also achieves high allocative efficiencies, transaction success rates and average trader profits. Moreover, we reveal some insights of the CAT: 1) successful markets should maintain a stable and high market share of intra-marginal traders; 2) a specialist’s performance is dependent on the distribution of trading strategies. However, typical double auction models assume trading agents have a fixed trading direction of either buy or sell. With this limitation they cannot directly reflect the fact that traders in financial markets (the most popular application of double auction) decide their trading directions dynamically. To address this issue, we introduce the Bi-directional Double Auction (BDA) market which is populated by two-way traders. Experiments are conducted under both dynamic and static settings of the continuous BDA market. We find that the allocative efficiency of a continuous BDA market mainly comes from rational selection of trading directions. Furthermore, we introduce a high-performance Kernel trading strategy in the BDA market which uses kernel probability density estimator built on historical transaction data to decide optimal order prices. Kernel trading strategy outperforms some popular intelligent double auction trading strategies including ZIP, GD and RE in the continuous BDA market by making the highest profit in static games and obtaining the best wealth in dynamic games.
Resumo:
With the reformation of spectrum policy and the development of cognitive radio, secondary users will be allowed to access spectrums licensed to primary users. Spectrum auctions can facilitate this secondary spectrum access in a market-driven way. To design an efficient auction framework, we first study the supply and demand pressures and the competitive equilibrium of the secondary spectrum market, considering the spectrum reusability. In well-designed auctions, competition among participants should lead to the competitive equilibrium according to the traditional economic point of view. Then, a discriminatory price spectrum double auction framework is proposed for this market. In this framework, rational participants compete with each other by using bidding prices, and their profits are guaranteed to be non-negative. A near-optimal heuristic algorithm is also proposed to solve the auction clearing problem of the proposed framework efficiently. Experimental results verify the efficiency of the proposed auction clearing algorithm and demonstrate that competition among secondary users and primary users can lead to the competitive equilibrium during auction iterations using the proposed auction framework. Copyright © 2011 John Wiley & Sons, Ltd.
Resumo:
This paper analyzes a communication network facing users with a continuous distribution of delay cost per unit time. Priority queueing is often used as a way to provide differential services for users with different delay sensitivities. Delay is a key dimension of network service quality, so priority is a valuable resource which is limited and should to be optimally allocated. We investigate the allocation of priority in queues via a simple bidding mechanism. In our mechanism, arriving users can decide not to enter the network at all or submit an announced delay sensitive value. User entering the network obtains priority over all users who make lower bids, and is charged by a payment function which is designed following an exclusion compensation principle. The payment function is proved to be incentive compatible, so the equilibrium bidding behavior leads to the implementation of "cµ-rule". Social warfare or revenue maximizing by appropriately setting the reserve payment is also analyzed.
Resumo:
In this paper, we consider the impact of the introduction of a closing call auction on market quality of the London Stock Exchange. We employ the market model, RDD and MEC metrics of market quality. These signify substantial improvements to market quality at both the close and open for migrating stocks.We note that these improvements are larger at the open than the close. An important contribution of our paper is that we show that changes to market quality are stronger in those securities that have the lowest liquidity in the pre-call period. In contrast, market quality changes following the introduction of a closing call auction are approximately neutral for high-liquidity securities. We conclude that the implementation of a closing call auction, for high-liquidity securities may not enhance market quality.