2 resultados para perovskite structure

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The microstructure and thermoelectric properties of Yb-doped Ca0.9-x Yb x La0.1 MnO3 (0 ≤ x ≤ 0.05) ceramics prepared by using the Pechini method derived powders have been investigated. X-ray diffraction analysis has shown that all samples exhibit single phase with orthorhombic perovskite structure. All ceramic samples possess high relative densities, ranging from 97.04% to 98.65%. The Seebeck coefficient is negative, indicating n-type conduction in all samples. The substitution of Yb for Ca leads to a marked decrease in the electrical resistivity, along with a moderate decrease in the absolute value of the Seebeck coefficient. The highest power factor is obtained for the sample with x = 0.05. The electrical conduction in these compounds is due to electrons hopping between Mn3+ and Mn4+, which is enhanced by increasing Yb content.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of substitution and oxidation-reduction on the thermal conductivity of perovskite-like layered structure (PLS) ceramics was investigated in relation to mass contrast and non-stoichiometry. Sr (acceptor) was substituted on the A site, while Ta (donor) was substituted on the B site of La2Ti2O7. Substitution in PLS materials creates atomic scale disorders to accommodate the non-stoichiometry. High resolution transmission electron microscopy and X ray diffraction revealed that acceptor substitution in La2Ti2O7 produced nanoscale intergrowths of n = 5 layered phase, while donor substitution produced nanoscale intergrowths of n = 3 layered phase. As a result of these nanoscale intergrowths, the thermal conductivity value reduced by as much as ∼20%. Pure La2Ti2O7 has a thermal conductivity value of ∼1.3 W/m K which dropped to a value of ∼1.12 W/m K for Sr doped La2Ti2O7 and ∼0.93 W/m K for Ta doped La2Ti2O7 at 573 K.