4 resultados para periodicity fluctuation
em Aston University Research Archive
Resumo:
In Alzheimer's disease (AD), neurofibrillary tangles (NFT) occur within neurons in both the upper and lower cortical laminae. Using a statistical method that estimates the size and spacing of NFT clusters along the cortex parallel to the pia mater, two hypotheses were tested: 1) that the cluster size and distribution of the NFT in gyri of the temporal lobe reflect degeneration of the feedforward (FF) and feedback (FB) cortico-cortical pathways, and 2) that there is a spatial relationship between the clusters of NFT in the upper and lower laminae. In 16 temporal lobe gyri from 10 cases of sporadic AD, NFT were present in both the upper and lower laminae in 11/16 (69%) gyri and in either the upper or lower laminae in 5/16 (31%) gyri. Clustering of the NFT was observed in all gyri. A significant peak-to-peak distance was observed in the upper laminae in 13/15 (87%) gyri and in the lower laminae in 8/ 12 (67%) gyri, suggesting a regularly repeating pattern of NFT clusters along the cortex. The regularly distributed clusters of NFT were between 500 and 800 μm in size, the estimated size of the cells of origin of the FF and FB cortico-cortical projections, in the upper laminae of 6/13 (46%) gyri and in the lower laminae of 2/8 (25%) gyri. Clusters of NFT in the upper laminae were spatially correlated (in phase) with those in the lower laminae in 5/16 (31%) gyri. The clustering patterns of the NFT are consistent with their formation in relation to the FF and FB cortico-cortical pathways. In most gyri, NFT clusters appeared to develop independently in the upper and lower laminae.
Resumo:
In studies of complex heterogeneous networks, particularly of the Internet, significant attention was paid to analyzing network failures caused by hardware faults or overload, where the network reaction was modeled as rerouting of traffic away from failed or congested elements. Here we model another type of the network reaction to congestion - a sharp reduction of the input traffic rate through congested routes which occurs on much shorter time scales. We consider the onset of congestion in the Internet where local mismatch between demand and capacity results in traffic losses and show that it can be described as a phase transition characterized by strong non-Gaussian loss fluctuations at a mesoscopic time scale. The fluctuations, caused by noise in input traffic, are exacerbated by the heterogeneous nature of the network manifested in a scale-free load distribution. They result in the network strongly overreacting to the first signs of congestion by significantly reducing input traffic along the communication paths where congestion is utterly negligible. © Copyright EPLA, 2012.
Resumo:
Physical systems with co-existence and interplay of processes featuring distinct spatio-temporal scales are found in various research areas ranging from studies of brain activity to astrophysics. The complexity of such systems makes their theoretical and experimental analysis technically and conceptually challenging. Here, we discovered that while radiation of partially mode-locked fibre lasers is stochastic and intermittent on a short time scale, it exhibits non-trivial periodicity and long-scale correlations over slow evolution from one round-trip to another. A new technique for evolution mapping of intensity autocorrelation function has enabled us to reveal a variety of localized spatio-temporal structures and to experimentally study their symbiotic co-existence with stochastic radiation. Real-time characterization of dynamical spatio-temporal regimes of laser operation is set to bring new insights into rich underlying nonlinear physics of practical active- and passive-cavity photonic systems.
Resumo:
In studies of complex heterogeneous networks, particularly of the Internet, significant attention was paid to analysing network failures caused by hardware faults or overload. There network reaction was modelled as rerouting of traffic away from failed or congested elements. Here we model network reaction to congestion on much shorter time scales when the input traffic rate through congested routes is reduced. As an example we consider the Internet where local mismatch between demand and capacity results in traffic losses. We describe the onset of congestion as a phase transition characterised by strong, albeit relatively short-lived, fluctuations of losses caused by noise in input traffic and exacerbated by the heterogeneous nature of the network manifested in a power-law load distribution. The fluctuations may result in the network strongly overreacting to the first signs of congestion by significantly reducing input traffic along the communication paths where congestion is utterly negligible. © 2013 IEEE.