2 resultados para pedestrian level crossings

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-identity as a careful pedestrian has not been fully considered in previous work on predicting intention to cross the road, or actual crossing behaviour, in non-optimal situations. Evidence suggests that self-identity may be a better predictor than attitudes in situations where decision-making styles have become habitual ways to respond. This study compared contributions of self-identity and attitudes to the prediction of intentions in two situations differing in level of habitual crossing expectation, and to crossing behaviour. Three hundred and sixty-two adults (17–92 years) completed a questionnaire measuring self-identity, attitudes, intentions, experience, social identity variables (e.g. age, gender) and personal limitations (mobility). Two hundred and five participants also completed a road-crossing simulation. Self-identity and attitude were both shown as significant independent predictors of intention in both situations. However, self-identity was less effective as a predictor in the higher risk scenario, where intention to perform the behaviour was lower, and for participants aged >75 years who had lower intention across scenarios. Self-identity strongly predicted intention to cross, which in turn predicted behaviour, but self-identity did not directly predict behaviour. Self-identity was strongly predicted by age. Implications for theories of compensation in older age and for design and targeting of pedestrian safety education are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Influential models of edge detection have generally supposed that an edge is detected at peaks in the 1st derivative of the luminance profile, or at zero-crossings in the 2nd derivative. However, when presented with blurred triangle-wave images, observers consistently marked edges not at these locations, but at peaks in the 3rd derivative. This new phenomenon, termed ‘Mach edges’ persisted when a luminance ramp was added to the blurred triangle-wave. Modelling of these Mach edge detection data required the addition of a physiologically plausible filter, prior to the 3rd derivative computation. A viable alternative model was examined, on the basis of data obtained with short-duration, high spatial-frequency stimuli. Detection and feature-making methods were used to examine the perception of Mach bands in an image set that spanned a range of Mach band detectabilities. A scale-space model that computed edge and bar features in parallel provided a better fit to the data than 4 competing models that combined information across scale in a different manner, or computed edge or bar features at a single scale. The perception of luminance bars was examined in 2 experiments. Data for one image-set suggested a simple rule for perception of a small Gaussian bar on a larger inverted Gaussian bar background. In previous research, discriminability (d’) has typically been reported to be a power function of contrast, where the exponent (p) is 2 to 3. However, using bar, grating, and Gaussian edge stimuli, with several methodologies, values of p were obtained that ranged from 1 to 1.7 across 6 experiments. This novel finding was explained by appealing to low stimulus uncertainty, or a near-linear transducer.