14 resultados para patch-clamp

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of a 15-mer antisense c-myc phosphorothioate modified oligodeoxynucleotide (OdN) upon the volume-sensitive Cl- current in ROS 17/2.8 cells were investigated using the whole-cell configuration of the patch clamp technique. At 5 microM, the OdN reversibly inhibited the current in a voltage- and time-dependent fashion. This was evident from the reduction in the peak current as assessed at the termination of each voltage pulse and an acceleration of the time-dependent inactivation present at strongly depolarised potentials. The kinetic modifications induced by the OdN suggest it may act by blocking the pore of open channels when the cell membrane potential is depolarised.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. The effects of arachidonic acid upon the volume-sensitive Cl- current present in cultured osteoblastic cells (ROS 17/2.8) was studied using the whole-cell patch-clamp technique. 2. Arachidonate produced two distinct phases of inhibition, a rapid phase occurring within 10-15 s of application preceding a slower phase that occurred 2 min after onset of arachidonate superfusion. Accompanying the slower inhibitory phase was an acceleration of the time-dependent inactivation exhibited by the current at strongly depolarized potentials (> + 50 mV). The half-maximal inhibitory concentrations (IC50) were 177 +/- 31 and 10 +/- 4 microM for the two phases respectively. 3. Arachidonate was still effective in the presence of inhibitors of cyclo-oxygenase (indomethacin, 10 microM), lipoxygenase (nordihydroguaretic acid, 10-100 microM) and cytochrome P450 (SKF525A, 100 microM; ethoxyresorufin, 10 microM; metyrapone, 500 microM; piperonyl butoxide, 500 microM; cimetidine, 1 mM). The effects of arachidonate could not be produced by another cis unsaturated fatty acid, oleic acid. 4. Measurements of cell volume showed that arachidonate effectively inhibited the regulatory volume decrease elicited by ROS 17/2.8 cells in response to a reduction in extracellular osmolarity. 5. It is concluded that the volume-sensitive Cl- conductance in ROS 17/2.8 cells is directly modulated by arachidonate and may represent a physiological mechanism by which volume regulation can be controlled in these cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of extracellular application of arginine vasopressin (AVP) upon membrane currents in L6 skeletal myocytes was investigated using the whole-cell configuration of the patch-clamp technique. At O mV AVP produced large amplitude, transient outward currents that reversed when the clamping potential was changed to -100 mV (negative to EK) The effects of alterations in the extracellular K+ concentration upon the current reversal potential suggested that the current elicited by AVP was carried mainly by K+ ions. Intracellular dialysis with 10 μM inositol 1,4,5-trisphosphate (InsP3) elicited similar currents but only in 6/14 cells. Inclusion of 5 mg ml-1 heparin in the intracellular solutions was ineffective at inhibiting the current responses to AVP. The AVP-induced current was totally abolished when the intracellular EGTA concentration was increased from 0.05 mM to 10 mM or Ca2+ was removed from the extracellular perfusing solution. These results suggest that AVP produces activation of a Ca2+-sensitive K+ conductance in L6 skeletal myocytes by a process dependent upon extracellular Ca2+ and not intracellular Ca2+ release. © 1995 Academic Press. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. During osmotic swelling, cultured osteoblastic cells (ROS 17/2.8) exhibited activation of large amplitude Cl- currents in the whole-cell configuration of the patch-clamp technique. Effects of hypotonic shock on cell volume and membrane conductance were rapidly reversed on return to isotonic conditions. 2. Voltage command pulses in the range -80 to +50 mV produce instantaneous activation of Cl- currents. At potentials more positive than +50 mV the current exhibited time-dependent inactivation. The instantaneous current-voltage relationship was outwardly rectifying. 3. The anion permeability sequence of the induced current was SCN- (2.2) > I- (1.9) > Br- (1.5) > Cl- (1.0) > F- (0.8) > gluconate- (0.2). This corresponds to Eisenman's sequence I. 4. The volume-sensitive Cl- current was effectively inhibited by the Cl- channel blockers 4,4'-diisothiocyanatostilbene-2,2-disulphonic acid (DIDS) and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB). Outward currents were more effectively suppressed by DIDS than inward currents. The concentrations for 50% inhibition (IC50) of outward and inward currents were 81 and 298 μM, respectively. NPPB was equally effective at inhibiting outward and inward currents (IC50 of 64 μM). The current was relatively insensitive to diphenylamine-2-carboxylate (DPC), 500 μM producing only 22.5 ± 4.0% inhibition. 5. Inhibitors of protein kinase A (H-89, 1 μM) and tyrosine kinase (tyrphostin A25, 200 μM) were without effect upon activation of Cl- currents in response to hypotonic shock. Under isotonic conditions, elevation of intracellular Ca2+ by ionomycin (1 μM) or activation of protein kinase C by 12-O-tetradecanoylphorbol 13-acetate (TPA, 0.1 μM) failed to evoke increases in basal Cl- conductance levels. 6. It is concluded that an outwardly rectifying Cl- conductance is activated upon osmotic swelling and may be involved in cell volume regulation of ROS 17/2.8 cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of hypotonic shock upon membrane C1 permeability of ROS 17/2.8 osteoblast-like cells was investigated using the patch-clamp technique. Hypotonic shock produced cell swelling that was accompanied by large amplitude, outwardly rectifying, currents that were active across the entire physiological range of membrane potentials (-80 to +100 mV). At strong depolarisations (> +50 mV) the currents exhibited time-dependent inactivation that followed a monoexponential time course. The currents were anion selective and exhibited a selectivity sequence of SCN- > I > Br- > Cl- > F- > gluconate. Current activation was unaffected by inhibitors of protein kinase (A (H-89) and tyrosine kinase (tyrphostin A25), and could not be mimicked by elevation of intracellular Ca2+ or activation of protein kinase C. Similarly, disruption of actin filaments by dihydrocytochalsin B, or generation of membrane tension by dipyridamole failed to elicit significant increases in cell chloride permeability. The mechanism of current activation is as yet undetermined. The currents were effectively inhibited by the chloride channel inhibitors NPPB and DIDS but resistant to DPC. A Cl- conductance with similar characteristics was found to be present in mouse primary cultured calvarial osteoblasts. The volume-sensitive Cl- current in ROS 17/2.8 cells was inhibited by arachidonic acid in two distinct phases. A rapid block that developed within 10 s, preceding a slower developing inhibitory phase that occurred approximately 90 s after onset of arachidonate superfusion. Arachidonic acid also induced kinetic modifications of the current which were evident as an acceleration of the time-dependent· inactivation exhibited at depolarised potentials. Inhibitors of cyclo-oxygenases, lipoxygenases and cytochrome P-4S0 were ineffectual against arachidonic acid's effects sugtgesting that arachidonic acid may elicit it's effects directly. Measurements of cell volume under hypotonic conditions showed that ROS 17/2,8 cells could effectively regulate their volume, However, effective inhibitors of the volume-sensitive CI" current drastically impaired this response suggesting that physiologically this current may have a vital role in cell volume regulation, In L6 skeletal myocytes, vasopressin was found to rapidiy hyperpolarise cells. This appears to occur as the result of activation of Ca2+ -sensitive K+ channels in a process dependent upon the presence of extracellular Ca2+.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Changes in the strength of signalling between neurones are thought to provide a cellular substrate for learning and memory. In the cerebellar cortex, raising the frequency and the strength of parallel fibre (PF) stimulation leads to a long-term depression (LTD) of the strength of signalling at the synapse between PFs and Purkinje cells (PCs), which spreads to distant synapses to the same cell via a nitric oxide (NO) dependent mechanism. At the same synapse, but under conditions of reduced post-synaptic calcium activity, raised frequency stimulation (RFS) of PFs triggers a long-term potentiation of synaptic transmission. The aims of the work described in this thesis were to investigate the conditions necessary for LTD and LTP at this synapse following RFS and to identify the origins and second messenger cascades involved in the induction and spread of LTP and LTD. In thin, parasagittal cerebellar slices whole cell patch clamp recordings were made from PCs and the effects of RFS of one of two, independent PF inputs to the same PC were examined under a range of experimental conditions. Under conditions designed to reduce post-synaptic calcium activity, RFS to a single PF input led to LTP and a decreases in paired pulse facilitation (PPF) in both pathways. This heterosynaptic potentiation was prevented by inhibition of protein kinase A (PKA) or by inhibition of NO synthase with either 7-nitroindazole (7-NI) or NG Nitro-L-argenine methyl ester. Inhibition of guanylate cyclase (GC) or protein kinase G (PKG) had no effect. A similar potentiation was observed upon application of the adenylyl cyclase (AC) activator forskolin or the NO donor spermine NONOate. Both of these treatments also resulted in an increase in the frequency of mEPSCs, which provides further evidence for a presynaptic origin of LTP. Forskolin induced potentiation and the increase in mEPSC frequency were blocked by 7-NI. The styryl dye FM1-43, a fluorescent reporter of endo- and exocytosis, was also used to further examine the possible pre-synaptic origins of LTP. RFS or forskolin application enhanced FM1-43 de-staining and NOS inhibitors blocked this effect. Application of NONOate also enhanced FM1-43 de-staining. When post-synaptic calcium activity was less strictly buffered, RFS to a single PF input led to a transient potentiation that was succeeded by LTD in both pathways. This LTD, which resembled previously described forms, was prevented by inhibition of the NO/cGMP/PKG cascade. Modification of the AC/cAMP/PKA cascade had no effect. In summary, the direction of synaptic plasticity at the PF-PC synapse in response to RFS depends largely on the level of post-synaptic calcium activity. LTP and LTD were non-input specific and both forms of plasticity were dependent on NOS activity. Induction of LTP was mediated by a presynaptic mechanism and depended on NO and cAMP production. LTD on the other hand was a post-synaptic process and required activity of the NO/cGMP/PKG signalling cascade.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Type 1 cannabinoid receptors (CB1R) have a well established role in modulating GABAergic signalling with the central nervous system, and are thought to be the only type present at GABAergic presynaptic terminals. In the medial entorhinal cortex (mEC), some cortical layers show high levels of ongoing GABAergic signalling (namely layer II) while others show relatively low levels (layer V). Using whole-cell patch clamp techniques, I have, for the first time, demonstrated the presence of functional CB1R in both deep and superficial layers of the mEC. Furthermore, using a range of highly specific ligands for both CB1R and CB2R, I present strong pharmacological evidence for CB2Rs being present in both deep and superficial layers of the mEC in the adult rat brain. In brain slices taken at earlier points in CNS development (P8-12), I have shown that while both CB1R and CB2R specific ligands do modulate GABAergic signalling at early developmental stages, antagonists/ inverse agonists and full agonists have similar effects, and serve only to reduce GABAergic signalling. These data suggest that the full cannabinoid signalling mechanisms at this early stage in synaptogenesis are not yet in place. During these whole-cell studies, I have developed and refined a novel recording technique, using an amantidine derivative (IEM1460) which allows inhibitory postsynaptic currents to be recorded under conditions in which glutamate receptors are not blocked and network activity remains high. Finally I have shown that bath applied CB1 and CB2 receptor antagonists/ inverse agonists are capable of modulating kainic acid induced persistent oscillatory activity in mEC. Inverse agonists suppressed oscillatory activity in the superficial layers of the mEC while it was enhanced in the deeper layers. It seems likely that cannabinoid receptors modulate the inhibitory neuronal activity that underlies network oscillations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the Ventrobasal (VB) thalamus, astrocytes are known to elicit NMDA-receptor mediated slow inward currents (SICs) spontaneously in neurons. Fluorescence imaging of astrocytes and patch clamp recordings from the thalamocortical (TC) neurons in the VB of 6-23 day old Wistar rats were performed. TC neurons exhibit spontaneous SICs at low frequencies (~0.0015Hz) that were inhibited by NMDA-receptor antagonists D-AP5 (50µM), and were insensitive to TTX (1µM) suggesting a non-neuronal origin. The effect of corticothalamic (CT) and sensory (Sen) afferent stimulation on astrocyte signalling was assessed by varying stimulus parameters. Moderate synaptic stimulation elicited astrocytic Ca2+ increases, but did not affect the incidence of spontaneous SICs. Prolonged synaptic stimulation induced a 265% increase in SIC frequency. This increase lasted over one hour after the cessation of synaptic stimulation, so revealing a Long Term Enhancement (LTE) of astrocyte-neuron signalling. LTE induction required group I mGluR activation. LTE SICs targeted NMDA-receptors located at extrasynaptic sites. LTE showed a developmental profile: from weeks 1-3, the SIC frequency was increased by an average 50%, 240% and 750% respectively. Prolonged exposure to glutamate (200µM) increased spontaneous SIC frequency by 1800%. This “chemical” form of LTE was prevented by the broad-spectrum excitatory amino acid transporter (EAAT) inhibitor TBOA (300µM) suggesting that glutamate uptake was a critical factor. My results therefore show complex glutamatergic signalling interactions between astrocytes and neurons. Furthermore, two previously unrecognised mechanisms of enhancing SIC frequency are described. The synaptically induced LTE represents a form of non-synaptic plasticity and a glial “memory” of previous synaptic activity whilst enhancement after prolonged glutamate exposure may represent a pathological glial signalling mechanism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ethosuximide is the drug of choice for treating generalized absence seizures, but its mechanism of action is still a matter of debate. It has long been thought to act by disrupting a thalamic focus via blockade of T-type channels and, thus, generation of spike-wave activity in thalamocortical pathways. However, there is now good evidence that generalized absence seizures may be initiated at a cortical focus and that ethosuximide may target this focus. In the present study we have looked at the effect ethosuximide on glutamate and GABA release at synapses in the rat entorhinal cortex in vitro, using two experimental approaches. Whole-cell patch-clamp studies revealed an increase in spontaneous GABA release by ethosuximide concurrent with no change in glutamate release. This was reflected in studies that estimated global background inhibition and excitation from intracellularly recorded membrane potential fluctuations, where there was a substantial rise in the ratio of network inhibition to excitation, and a concurrent decrease in excitability of neurones embedded in this network. These studies suggest that, in addition to well-characterised effects on ion channels, ethosuximide may directly elevate synaptic inhibition in the cortex and that this could contribute to its anti-absence effects. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim - The aim of the study was to determine the potential for KV1 potassium channel blockers as inhibitors of human neoinitimal hyperplasia. Methods and results - Blood vessels were obtained from patients or mice and studied in culture. Reverse transcriptasepolymerase chain reaction and immunocytochemistry were used to detect gene expression. Whole-cell patch-clamp, intracellular calcium measurement, cell migration assays, and organ culture were used to assess channel function.  KV1.3 was unique among the  KV1 channels in showing preserved and up-regulated expression when the vascular smooth muscle cells switched to the proliferating phenotype. There was strong expression in neointimal formations. Voltage-dependent potassium current in proliferating cells was sensitive to three different blockers of  KV1.3 channels. Calcium entry was also inhibited. All three blockers reduced vascular smooth muscle cell migration and the effects were non-additive. One of the blockers (margatoxin) was highly potent, suppressing cell migration with an IC of 85 pM. Two of the blockers were tested in organ-cultured human vein samples and both inhibited neointimal hyperplasia. Conclusion - KV1.3 potassium channels are functional in proliferating mouse and human vascular smooth muscle cells and have positive effects on cell migration. Blockers of the channels may be useful as inhibitors of neointimal hyperplasia and other unwanted vascular remodelling events. © 2010 The Author.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Presynaptic NMDA receptors facilitate the release of glutamate at excitatory cortical synapses and are involved in regulation of synaptic dynamics and plasticity. At synapses in the entorhinal cortex these receptors are tonically activated and provide a positive feedback modulation of the level of background excitation. NMDA receptor activation requires obligatory occupation of a co-agonist binding site, and in the present investigation we have examined whether this site on the presynaptic receptor is activated by endogenous glycine or d-serine. We used whole-cell patch clamp recordings of spontaneous AMPA receptor-mediated synaptic currents from rat entorhinal cortex neurones in vitro as a monitor of presynaptic glutamate release. Addition of exogenous glycine or d-serine had minimal effects on spontaneous release, suggesting that the co-agonist site was endogenously activated and likely to be saturated in our slices. This was supported by the observation that a co-agonist site antagonist reduced the frequency of spontaneous currents. Depletion of endogenous glycine by enzymatic breakdown with a bacterial glycine oxidase had little effect on glutamate release, whereas d-serine depletion with a yeast d-amino acid oxidase significantly reduced glutamate release, suggesting that d-serine is the endogenous agonist. Finally, the effects of d-serine depletion were mimicked by compromising astroglial cell function, and this was rescued by exogenous d-serine, indicating that astroglial cells are the provider of the d-serine that tonically activates the presynaptic NMDA receptor. We discuss the significance of these observations for the aetiology of epilepsy and possible targeting of the presynaptic NMDA receptor in anticonvulsant therapy. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The entorhinal cortex (EC) controls hippocampal input and output, playing major roles in memory and spatial navigation. Different layers of the EC subserve different functions and a number of studies have compared properties of neurones across layers. We have studied synaptic inhibition and excitation in EC neurones, and we have previously compared spontaneous synaptic release of glutamate and GABA using patch clamp recordings of synaptic currents in principal neurones of layers II (L2) and V (L5). Here, we add comparative studies in layer III (L3). Such studies essentially look at neuronal activity from a presynaptic viewpoint. To correlate this with the postsynaptic consequences of spontaneous transmitter release, we have determined global postsynaptic conductances mediated by the two transmitters, using a method to estimate conductances from membrane potential fluctuations. We have previously presented some of this data for L3 and now extend to L2 and L5. Inhibition dominates excitation in all layers but the ratio follows a clear rank order (highest to lowest) of L2>L3>L5. The variance of the background conductances was markedly higher for excitation and inhibition in L2 compared to L3 or L5. We also show that induction of synchronized network epileptiform activity by blockade of GABA inhibition reveals a relative reluctance of L2 to participate in such activity. This was associated with maintenance of a dominant background inhibition in L2, whereas in L3 and L5 the absolute level of inhibition fell below that of excitation, coincident with the appearance of synchronized discharges. Further experiments identified potential roles for competition for bicuculline by ambient GABA at the GABAA receptor, and strychnine-sensitive glycine receptors in residual inhibition in L2. We discuss our results in terms of control of excitability in neuronal subpopulations of EC neurones and what these may suggest for their functional roles. © 2014 Greenhill et al.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Presynaptic GABAB receptors (GABABR) control glutamate and GABA release at many synapses in the nervous system. In the present study we used whole-cell patch-clamp recordings of spontaneous excitatory and inhibitory synaptic currents in the presence of TTX to monitor glutamate and GABA release from synapses in layer II and V of the rat entorhinal cortex (EC)in vitro. In both layers the release of both transmitters was reduced by application of GABABR agonists. Quantitatively, the depression of GABA release in layer II and layer V, and of glutamate release in layer V was similar, but glutamate release in layer II was depressed to a greater extent. The data suggest that the same GABABR may be present on both GABA and glutamate terminals in the EC, but that the heteroreceptor may show a greater level of expression in layer II. Studies with GABABR antagonists suggested that neither the auto- nor the heteroreceptor was consistently tonically activated by ambient GABA in the presence of TTX. Studies in EC slices from rats made chronically epileptic using a pilocarpine model of temporal lobe epilepsy revealed a reduced effectiveness of both auto- and heteroreceptor function in both layers. This could suggest that enhanced glutamate and GABA release in the EC may be associated with the development of the epileptic condition. Copyright © 2006 S. Karger AG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY SERVICES WITH PRIOR ARRANGEMENT