3 resultados para particle interactions
em Aston University Research Archive
Resumo:
A new surface analysis technique has been developed which has a number of benefits compared to conventional Low Energy Ion Scattering Spectrometry (LEISS). A major potential advantage arising from the absence of charge exchange complications is the possibility of quantification. The instrumentation that has been developed also offers the possibility of unique studies concerning the interaction between low energy ions and atoms and solid surfaces. From these studies it may also be possible, in principle, to generate sensitivity factors to quantify LEISS data. The instrumentation, which is referred to as a Time-of-Flight Fast Atom Scattering Spectrometer has been developed to investigate these conjecture in practice. The development, involved a number of modifications to an existing instrument, and allowed samples to be bombarded with a monoenergetic pulsed beam of either atoms or ions, and provided the capability to analyse the spectra of scattered atoms and ions separately. Further to this a system was designed and constructed to allow incident, exit and azimuthal angles of the particle beam to be varied independently. The key development was that of a pulsed, and mass filtered atom source; which was developed by a cyclic process of design, modelling and experimentation. Although it was possible to demonstrate the unique capabilities of the instrument, problems relating to surface contamination prevented the measurement of the neutralisation probabilities. However, these problems appear to be technical rather than scientific in nature, and could be readily resolved given the appropriate resources. Experimental spectra obtained from a number of samples demonstrate some fundamental differences between the scattered ion and neutral spectra. For practical non-ordered surfaces the ToF spectra are more complex than their LEISS counterparts. This is particularly true for helium scattering where it appears, in the absence of detailed computer simulation, that quantitative analysis is limited to ordered surfaces. Despite this limitation the ToFFASS instrument opens the way for quantitative analysis of the 'true' surface region to a wider range of surface materials.
Resumo:
In the processing industries particulate materials are often in the form of powders which themselves are agglomerations of much smaller sized particles. During powder processing operations agglomerate degradation occurs primarily as a result of collisions between agglomerates and between agglomerates and the process equipment. Due to the small size of the agglomerates and the very short duration of the collisions it is currently not possible to obtain sufficiently detailed quantitative information from real experiments to provide a sound theoretically based strategy for designing particles to prevent or guarantee breakage. However, with the aid of computer simulated experiments, the micro-examination of these short duration dynamic events is made possible. This thesis presents the results of computer simulated experiments on a 2D monodisperse agglomerate in which the algorithms used to model the particle-particle interactions have been derived from contact mechanics theories and, necessarily, incorporate contact adhesion. A detailed description of the theoretical background is included in the thesis. The results of the agglomerate impact simulations show three types of behaviour depending on whether the initial impact velocity is high, moderate or low. It is demonstrated that high velocity impacts produce extensive plastic deformation which leads to subsequent shattering of the agglomerate. At moderate impact velocities semi-brittle fracture is observed and there is a threshold velocity below which the agglomerate bounces off the wall with little or no visible damage. The micromechanical processes controlling these different types of behaviour are discussed and illustrated by computer graphics. Further work is reported to demonstrate the effect of impact velocity and bond strength on the damage produced. Empirical relationships between impact velocity, bond strength and damage are presented and their relevance to attrition and comminution is discussed. The particle size distribution curves resulting from the agglomerate impacts are also provided. Computer simulated diametrical compression tests on the same agglomerate have also been carried out. Simulations were performed for different platen velocities and different bond strengths. The results show that high platen velocities produce extensive plastic deformation and crushing. Low platen velocities produce semi-brittle failure in which cracks propagate from the platens inwards towards the centre of the agglomerate. The results are compared with the results of the agglomerate impact tests in terms of work input, applied velocity and damage produced.
Resumo:
Abstract Various lubricating body fluids at tissue interfaces are composed mainly of combinations of phospholipids and amphipathic apoproteins. The challenge in producing synthetic replacements for them is not replacing the phospholipid, which is readily available in synthetic form, but replacing the apoprotein component, more specifically, its unique biophysical properties rather than its chemistry. The potential of amphiphilic reactive hypercoiling behaviour of poly(styrene-alt-maleic acid) (PSMA) was studied in combination with two diacylphosphatidylcholines (PC) of different chain lengths in aqueous solution. The surface properties of the mixtures were characterized by conventional Langmuir-Wilhelmy balance (surface pressure under compression) and the du Noüy tensiometer (surface tension of the non-compressed mixtures). Surface tension values and 31P NMR demonstrated that self-assembly of polymer-phospholipid mixtures were pH and concentration-dependent. Finally, the particle size and zeta potential measurements of this self-assembly showed that it can form negatively charged nanosized structures that might find use as drug or lipids release systems on interfaces such as the tear film or lung interfacial layers. The structural reorganization was sensitive to the alkyl chain length of the PC.