6 resultados para participatory research
em Aston University Research Archive
Resumo:
Whilst statistics vary, putting the percentage of women engineers at between 6%[1] and 9% [2] of the UK Engineering workforce, what cannot be disputed is that there is a need to attract more young women into the profession. Building on previous work which examined why engineering continues to fail to attract high numbers of young women[3,4] and starting with the research question "What do High School girls think of engineering as a future career and study choice?", this paper critiques research conducted utilising a participatory approach[5] in which twenty semi-structured in depth interviews were conducted by two teenage researchers with High School girls from two different schools in the West Midlands area of the UK. In looking at the issues through the eyes of 16 and 17 year old girls, the study provides a unique insight into why girls are not attracted to engineering. © American Society for Engineering Education, 2014.
Resumo:
The global population of people aged 60 years and older is growing rapidly. In the UK, there are currently around 10 million people aged 65 and over, and the number is projected to rise by 50% in the next 20 years (RNIB, 2013). While ongoing advances in information technology (IT) are undoubtedly increasing the scope for IT to enhance and support older adults' daily living, the digital divide between older and younger adults - 43% of people below the age of 55 own and use a smartphone, compared to only 3% of people aged 65 and over (AgeUK, 2013) - raises concerns about the suitability of technological solutions for older adults, especially for older adults with impairments. Evidence suggests that sympathetic design of mobile technology does render it useful and acceptable to older adults: the key issue is, however, how best to achieve such sympathetic design when working with impaired older adults. We report here on a case study in order to outline the practicalities and highlight the benefits of participatory research for the design of sympathetic technology for (and importantly with) older adults with impairments.
Resumo:
Ongoing advances in mobile technologies have the potential to improve independence and quality of life of older adults by supporting the delivery of personalised and ubiquitous healthcare solutions. The authors are actively engaged in participatory, user-focused research to create a mobile assistive healthcare-related intervention for persons with age-related macular degeneration (AMD): the authors report here on our participatory research in which participatory design (PD) has been positively adopted and adapted for the design of our mobile assistive technology. The authors discuss their work as a case study in order to outline the practicalities and highlight the benefits of participatory research for the design of technology for (and importantly with) older adults. The authors argue it is largely impossible to achieve informed and effective design and development of healthcare-related technologies without employing participatory approaches, and outline recommendations for engaging in participatory design with older adults (with impairments) based on practical experience.
Resumo:
Previous work has drawn attention to what, in many respects, appears to be an insurmountable problem, the lack of women and girls in engineering. The debate about why young women are not attracted to engineering mostly focuses around issues of gender, with the profession stereotypically perceived as being more suitable for men. In seeking to investigate why this should be the case a participatory research approach was adopted in which two 17 year old female High School students were employed to interview their peers about their perceptions of engineering as a career. This paper presents some of the emergent findings of this research. In total twenty teenage girls from two city centre Schools were interviewed. The two teenage researchers developed the questions themselves, focusing on issues they identified as being important factors informing girls’ views of engineering. This approach provided a ‘new’ perspective – looking at the topic through the eyes of the target sample group. By drawing attention to some of the issues around gender and engineering, this paper contributes to current debates in this area – in doing so it provides a fresh look at an old problem and offers some workable solutions for ‘how to get more girls into engineering’.
Resumo:
Background: Stereotypically perceived to be an ‘all male’ occupation, engineering has for many years failed to attract high numbers of young women [1,2]. The reasons for this are varied, but tend to focus on misconceptions of the profession as being more suitable for men. In seeking to investigate this issue a participatory research approach was adopted [3] in which two 17 year-old female high school students interviewed twenty high school girls. Questions focused on the girls’ perceptions of engineering as a study and career choice. The findings were recorded and analysed using qualitative techniques. The study identified three distinctive ‘influences’ as being pivotal to girls’ perceptions of engineering; pedagogical; social; and, familial. Pedagogical Influences: Pedagogical influences tended to focus on science and maths. In discussing science, the majority of the girls identified biology and chemistry as more ‘realistic’ whilst physics was perceived to more suitable for boys. The personality of the teacher, and how a particular subject is taught, proved to be important influences shaping opinions. Social Influences: Societal influences were reflected in the girls’ career choice with the majority considering medical or social science related careers. Although all of the girls believed engineering to be ‘male dominated’, none believed that a woman should not be engineer. Familial Influences: Parental influence was identified as key to career and study choice; only two of the girls had discussed engineering with their parents of which only one was being actively encouraged to pursue a career in engineering. Discussion: The study found that one of the most significant barriers to engineering is a lack of awareness. Engineering did not register in the girls’ lives, it was not taught in school, and only one had met a female engineer. Building on the study findings, the discussion considers how engineering could be made more attractive to young women. Whilst misconceptions about what an engineer is need to be addressed, other more fundamental pedagogical barriers, such as the need to make physics more attractive to girls and the need to develop the curriculum so as to meet the learning needs of 21st Century students are discussed. By drawing attention to the issues around gender and the barriers to engineering, this paper contributes to current debates in this area – in doing so it provides food for thought about policy and practice in engineering and engineering education.
Resumo:
The global population of people aged 60 years and older is growing rapidly. In the UK, there are currently around 10 million people aged 65 and over, and the number is projected to rise by 50% in the next 20 years (RNIB, 2013). While ongoing advances in information technology (IT) are undoubtedly increasing the scope for IT to enhance and support older adults’ daily living, the digital divide between older and younger adults – 43% of people below the age of 55 own and use a smartphone, compared to only 3% of people aged 65 and over (AgeUK, 2013) – raises concerns about the suitability of technological solutions for older adults, especially for older adults with impairments. Evidence suggests that sympathetic design of mobile technology does render it useful and acceptable to older adults: the key issue is, however, how best to achieve such sympathetic design when working with impaired older adults. We report here on a case study in order to outline the practicalities and highlight the benefits of participatory research for the design of sympathetic technology for (and importantly with) older adults with impairments.