4 resultados para oxygen transport
em Aston University Research Archive
Resumo:
The contact lens represents a well-established important class of biomaterials. This thesis brings together the literature, mostly Japanese and American patents, concerned with an important group of polymers, `rigid gas permeable contact lens materials'. A comparison is made of similarities in the underlying chemical themes, centring on the use of variants of highly branched siloxy compounds with polymerizable methacrylate groups. There is a need for standard techniques to assess laboratory behaviour in relation to in vitro performance. A major part of the present work is dedicated to the establishment of such standardised techniques. It is apparent that property design requirements in this field (i.e. oxygen permeability, surface and mechanical properties) are to some extent conflicting. In principle, the structural approaches used to obtain high oxygen permeability lead to surface properties that are less than ideal in terms of compatibility with tears. PMMA is known to have uniquely good (but not perfect) surface properties in this respect; it has been used as a starting point in attempting to design new materials that possess a more acceptable compromise of transport and surface properties for ocular use. Initial examination of the oxygen permeabilities of relatively simple alkyl methacrylates, show that butyl methacrylate which has a permeability some fifty times greater than PMMA, represents an interesting and hitherto unexplored group of materials for ophthalmic applications. Consideration was similarly given to surface modification techniques that would produce materials having the ability to sustain coherent tear film in the eye without markedly impairing oxygen transport properties. Particular attention is paid to the use of oxygen plasma techniques in this respect. In conclusion, similar design considerations were applied to an extended wear hydrogel lens material in an attempt to overcome mechanical stability deficiencies which manifest themselves lq`in vivo' but not `in vitro'. A relatively simple structure modification, involving steric shielding of the amide substituent group, proved to be an effective solution to the problem.
Resumo:
Red blood cells (RBCs) are key players in systemic oxygen transport. RBCs respond to in vitro hypoxia through the so-called oxygen-dependent metabolic regulation, which involves the competitive binding of deoxyhemoglobin and glycolytic enzymes to the N-terminal cytosolic domain of band 3. This mechanism promotes the accumulation of 2,3-DPG, stabilizing the deoxygenated state of hemoglobin, and cytosol acidification, triggering oxygen off-loading through the Bohr effect. Despite in vitro studies, in vivo adaptations to hypoxia have not yet been completely elucidated. Within the framework of the AltitudeOmics study, erythrocytes were collected from 21 healthy volunteers at sea level, after exposure to high altitude (5260m) for 1, 7 and 16days, and following reascent after 7days at 1525m. UHPLC-MS metabolomics results were correlated to physiological and athletic performance parameters. Immediate metabolic adaptations were noted as early as a few hours from ascending to >5000m, and maintained for 16 days at high altitude. Consistent with the mechanisms elucidated in vitro, hypoxia promoted glycolysis and deregulated the pentose phosphate pathway, as well purine catabolism, glutathione homeostasis, arginine/nitric oxide and sulphur/H2S metabolism. Metabolic adaptations were preserved one week after descent, consistently with improved physical performances in comparison to the first ascendance, suggesting a mechanism of metabolic memory.
Resumo:
Redox-sensitive cell signalling Thiol groups and the regulation of gene expression Redox-sensitive signal transduction pathways Protein kinases Protein phosphatases Lipids and phospholipases Antioxidant (electrophile) response element Intracellular calcium signalling Transcription factors NF-?B AP-1 p53 Cellular responses to oxidative stress Cellular responses to change in redox state Proliferation Cell death Immune cell function Reactive oxygen and nitrogen species – good or bad? Reactive oxygen species and cell death Reactive oxygen species and inflammation Are specific reactive oxygen species and antioxidants involved in modulating cellular responses? Specific effects of dietary antioxidants in cell regulation Carotenoids Vitamin E Flavonoids Inducers of phase II enzymes Disease states affected Oxidants, antioxidants and mitochondria Introduction Mitochondrial generation of reactive oxygen and nitrogen species Mitochondria and apoptosis Mitochondria and antioxidant defences Key role of mitochondrial GSH in the defence against oxidative damage Mitochondrial oxidative damage Direct oxidative damage to the mitochondrial electron transport chain Nitric oxide and damage to mitochondria Effects of nutrients on mitochondria Caloric restriction and antioxidants Lipids Antioxidants Techniques and approaches Mitochondrial techniques cDNA microarray approaches Proteomics approaches Transgenic mice as tools in antioxidant research Gene knockout and over expression Transgenic reporter mice Conclusions Future research needs
Resumo:
The yeast Saccharomyces cerevisiae predominantly ferments glucose to ethanol at high external glucose concentrations, irrespective of the presence of oxygen. In contrast, at low external glucose concentrations and in the presence of oxygen, as in a glucose-limited chemostat, no ethanol is produced. The importance of the external glucose concentration suggests a central role for the affinity and maximal transport rates of yeast's glucose transporters in the control of ethanol production. Here we present a series of strains producing functional chimeras between the hexose transporters Hxt1 and Hxt7, each of which lias distinct glucose transport characteristics. The strains display a range of decreasing glycolytic rates resulting in a proportional decrease in ethanol production. Using these strains, we show for the first time that at high glucose levels, the glucose uptake capacity of wild-type S. cerevisiae does not control glycolytic flux during exponential batch growth. In contrast, our chimeric Hxt transporters control the rate of glycolysis to a high degree. Strains whose glucose uptake is mediated by these chimeric transporters will undoubtedly provide a powerful tool with which to examine in detail the mechanism underlying the switch between fermentation and respiration in S. cerevisiae and will provide new tools for the control of industrial fermentations.