4 resultados para oxidase (AOX) gene

em Aston University Research Archive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background - Pichia pastoris is a widely-used host for recombinant protein production; expression is typically driven by methanol-inducible alcohol oxidase (AOX) promoters. Recently this system has become an important source of recombinant G protein-coupled receptors (GPCRs) for structural biology and drug discovery. The influence of diverse culture parameters (such as pH, dissolved oxygen concentration, medium composition, antifoam concentration and culture temperature) on productivity has been investigated for a wide range of recombinant proteins in P. pastoris. In contrast, the impact of the pre-induction phases on yield has not been as closely studied. In this study, we examined the pre-induction phases of P. pastoris bioreactor cultivations producing three different recombinant proteins: the GPCR, human A2a adenosine receptor (hA2aR), green fluorescent protein (GFP) and human calcitonin gene-related peptide receptor component protein (as a GFP fusion protein; hCGRP-RCP-GFP). Results - Functional hA2aR was detected in the pre-induction phases of a 1 L bioreactor cultivation of glycerol-grown P. pastoris. In a separate experiment, a glycerol-grown P. pastoris strain secreted soluble GFP prior to methanol addition. When glucose, which has been shown to repress AOX expression, was the pre-induction carbon source, hA2aR and GFP were still produced in the pre-induction phases. Both hA2aR and GFP were also produced in methanol-free cultivations; functional protein yields were maintained or increased after depletion of the carbon source. Analysis of the pre-induction phases of 10 L pilot scale cultivations also demonstrated that pre-induction yields were at least maintained after methanol induction, even in the presence of cytotoxic concentrations of methanol. Additional bioreactor data for hCGRP-RCP-GFP and shake-flask data for GFP, horseradish peroxidase (HRP), the human tetraspanins hCD81 and CD82, and the tight-junction protein human claudin-1, demonstrated that bioreactor but not shake flask cultivations exhibit recombinant protein production in the pre-induction phases of P. pastoris cultures. Conclusions - The production of recombinant hA2aR, GFP and hCGRP-RCP-GFP can be detected in bioreactor cultivations prior to methanol induction, while this is not the case for shake-flask cultivations of GFP, HRP, hCD81, hCD82 and human claudin-1. This confirms earlier suggestions of leaky expression from AOX promoters, which we report here for both glycerol- and glucose-grown cells in bioreactor cultivations. These findings suggest that the productivity of AOX-dependent bioprocesses is not solely dependent on induction by methanol. We conclude that in order to maximize total yields, pre-induction phase cultivation conditions should be optimized, and that increased specific productivity may result in decreased biomass yields.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Age related macular degeneration (AMD) is the leading cause of blindness in individuals older than 65 years of age. It is a multifactorial disorder and identification of risk factors enables individuals to make lifestyle choices that may reduce the risk of disease. Collaboration between geneticists, ophthalmologists, and optometrists suggests that genetic risk factors play a more significant role in AMD than previously thought. The most important genes are associated with immune system modulation and the complement system, e.g., complement factor H (CFH), factor B (CFB), factor C3, and serpin peptidase inhibitor (SERPING1). Genes associated with membrane transport, e.g., ATP-binding cassette protein (ABCR) and voltage-dependent calcium channel gamma 3 (CACNG3), the vascular system, e.g., fibroblast growth factor 2 (FGF2), fibulin-5, lysyl oxidase-like gene (LOXL1) and selectin-P (SELP), and with lipid metabolism, e.g., apolipoprotein E (APOE) and hepatic lipase (LIPC) have also been implicated. In addition, several other genes exhibit some statistical association with AMD, e.g., age-related maculopathy susceptibility protein 2 (ARMS2) and DNA excision repair protein gene (ERCC6) but more research is needed to establish their significance. Modifiable risk factors for AMD should be discussed with patients whose lifestyle and/or family history place them in an increased risk category. Furthermore, calculation of AMD risk using current models should be recommended as a tool for patient education. It is likely that AMD management in future will be increasingly influenced by assessment of genetic risk as such screening methods become more widely available. © 2013 Spanish General Council of Optometry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Monoamines have an important role in neural plasticity, a key factor in cortical pain processing that promotes changes in neuronal network connectivity. Monoamine oxidase type A (MAOA) is an enzyme that, due to its modulating role in monoaminergic activity, could play a role in cortical pain processing. The X-linked MAOA gene is characterized by an allelic variant of length, the MAOA upstream Variable Number Tandem Repeat (MAOA-uVNTR) region polymorphism. Two allelic variants of this gene are known, the high-activity MAOA (HAM) and low-activity MAOA (LAM). We investigated the role of MAOA-uVNTR in cortical pain processing in a group of healthy individuals measured by the trigeminal electric pain-related evoked potential (tPREP) elicited by repeated painful stimulation. A group of healthy volunteers was genotyped to detect MAOA-uVNTR polymorphism. Electrical tPREPs were recorded by stimulating the right supraorbital nerve with a concentric electrode. The N2 and P2 component amplitude and latency as well as the N2-P2 inter-peak amplitude were measured. The recording was divided into three blocks, each containing 10 consecutive stimuli and the N2-P2 amplitude was compared between blocks. Of the 67 volunteers, 37 were HAM and 30 were LAM. HAM subjects differed from LAM subjects in terms of amplitude of the grand-averaged and first-block N2-P2 responses (HAM>LAM). The N2-P2 amplitude decreased between the first and third block in HAM subjects but not LAM subjects. The MAOA-uVNTR polymorphism seemed to influence the brain response in a repeated tPREP paradigm and suggested a role of the MAOA as a modulator of neural plasticity related to cortical pain processing. Monoamines have an important role in neural plasticity, a key factor in cortical pain processing that promotes changes in neuronal network connectivity. Monoamine oxidase type A (MAOA) is an enzyme that, due to its modulating role in monoaminergic activity, could play a role in cortical pain processing. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Markers of increased oxidative stress are known to be elevated following acute myocardial infarction and in the context of chronic left ventricular hypertrophy or heart failure, and their levels may correlate with the degree of contractile dysfunction or cardiac deficit. An obvious pathological mechanism that may account for this correlation is the potential deleterious effects of increased oxidative stress through the induction of cellular dysfunction, energetic deficit or cell death. However, reactive oxygen species have several much more subtle effects in the remodelling or failing heart that involve specific redox-regulated modulation of signalling pathways and gene expression. Such redox-sensitive regulation appears to play important roles in the development of several components of the phenotype of the failing heart, for example cardiomyocyte hypertrophy, interstitial fibrosis and chamber remodelling. In this article, we review the evidence supporting the involvement of reactive oxygen species and redox signalling pathways in the development of cardiac hypertrophy and heart failure, with a particular focus on the NADPH oxidase family of superoxide-generating enzymes which appear to be especially important in redox signalling.