12 resultados para over-education
em Aston University Research Archive
Resumo:
There would seem to be no greater field for observing the effects of neo-liberal reforms in higher education than the former Soviet university, where attempts to legitimize neo-liberal philosophy over Soviet ideology plays out in everyday practices of educational reform. However, ethnographic research about higher education in post-Soviet Central Asia suggests that its “liberalization” is both an ideological myth and a complicated reality. This chapter focuses on how and why neo-liberal agendas have “travelled” to the Central Asian republic of Kyrgyzstan, what happens when educators encounter and resist them, and why these spaces of resistance are important starting points for the development of alternative visions of educational possibility in this recently “Third-worlded” society.
Resumo:
This thesis covers two major aspects of pharmacy education; undergraduate education and pre-registration training. A cohort of pharmacy graduates were surveyed over a period of four years, on issues related to undergraduate education, pre-registration training and continuing education. These graduates were the first-ever to sit the pre-registration examination. In addition, the opinions of pre-registration tutors were obtained on pre-registration training, during the year that competence-based assessment was introduced. It was concluded that although the undergraduate course provided a broad base of knowledge suitable for graduates in all branches of pharmacy, several issues were identified which would require attention in future developments of the course. These were: 1. the strong support for the expansion of clinical, social and practice-based teaching. 2. the strong support to retain the scientific content to the same extent as in the three-year course. 3. a greater use of problem-based learning methods. The graduates supported the provision of a pre-registration continuing education course to help prepare for the examination and in areas inadequately covered in the undergraduate course. There was also support for the introduction of some form of split branch training. There was no strong evidence to suggest that the training had been an application of undergraduate education. In general, competence-based training was well regarded by tutors as an appropriate and effective method of skill assessment. However, community tutors felt it was difficult to carry out effectively due to day-to-day time constraints. The assistant tutors in hospital pharmacy were found to have a very important role in provision of training, and should be adequately trained and supported. The study recommends the introduction of uniform training and a quality assurance mechanism for all tutors and assistants undertaking this role.
Resumo:
Over recent years, the role of engineering in promoting a sustainable society has received much public attention [1] with particular emphasis given to the need to promote the future prosperity and security of society through the recruitment and education of more engineers [2,3]. From an employment perspective, the Leitch Review [4] suggested that ‘generic’ transferable employability skills development should constitute a more substantial part of university education. This paper argues that the global drivers impacting engineering education [5] correlate strongly to those underpinning the Leitch review, therefore the question of how to promote transferable employability skills within the wider engineering curriculum is increasingly relevant. By exploring the use of heritage in the engineering curriculum as a way to promote learning and engage students, a less familiar approach to study is discussed. This approach moves away from stereotypical notions of the use of information technology as representing the pinnacle of innovation in education. Taking the student experience as its starting point, the paper draws upon the findings of an exploratory study critically analysing the pedagogical value of using heritage in engineering education. It discusses a teaching approach in which engineering students are taken out of their ‘comfort zone’ - away from the classroom, laboratory and computer, to a heritage site some 100 miles away from the university. The primary learning objective underpinning this approach is to develop students’ transferable skills by encouraging them to consider how to apply theoretical concepts to a previously unexplored situation. By reflecting upon students’ perceptions of the value of this approach, and by identifying how heritage may be utilised as an innovative learning and teaching approach in engineering education, this paper makes a notable contribution to current pedagogical debates in the discipline.
Resumo:
Introduction-The design of the UK MPharm curriculum is driven by the Royal Pharmaceutical Society of Great Britain (RPSGB) accreditation process and the EU directive (85/432/EEC).[1] Although the RPSGB is informed about teaching activity in UK Schools of Pharmacy (SOPs), there is no database which aggregates information to provide the whole picture of pharmacy education within the UK. The aim of the teaching, learning and assessment study [2] was to document and map current programmes in the 16 established SOPs. Recent developments in programme delivery have resulted in a focus on deep learning (for example, through problem based learning approaches) and on being more student centred and less didactic through lectures. The specific objectives of this part of the study were (a) to quantify the content and modes of delivery of material as described in course documentation and (b) having categorised the range of teaching methods, ask students to rate how important they perceived each one for their own learning (using a three point Likert scale: very important, fairly important or not important). Material and methods-The study design compared three datasets: (1) quantitative course document review, (2) qualitative staff interview and (3) quantitative student self completion survey. All 16 SOPs provided a set of their undergraduate course documentation for the year 2003/4. The documentation variables were entered into Excel tables. A self-completion questionnaire was administered to all year four undergraduates, using a pragmatic mixture of methods, (n=1847) in 15 SOPs within Great Britain. The survey data were analysed (n=741) using SPSS, excluding non-UK students who may have undertaken part of their studies within a non-UK university. Results and discussion-Interviews showed that individual teachers and course module leaders determine the choice of teaching methods used. Content review of the documentary evidence showed that 51% of the taught element of the course was delivered using lectures, 31% using practicals (includes computer aided learning) and 18% small group or interactive teaching. There was high uniformity across the schools for the first three years; variation in the final year was due to the project. The average number of hours per year across 15 schools (data for one school were not available) was: year 1: 408 hours; year 2: 401 hours; year 3: 387 hours; year 4: 401 hours. The survey showed that students perceived lectures to be the most important method of teaching after dispensing or clinical practicals. Taking the very important rating only: 94% (n=694) dispensing or clinical practicals; 75% (n=558) lectures; 52% (n=386) workshops, 50% (n=369) tutorials, 43% (n=318) directed study. Scientific laboratory practices were rated very important by only 31% (n=227). The study shows that teaching of pharmacy to undergraduates in the UK is still essentially didactic through a high proportion of formal lectures and with high levels of staff-student contact. Schools consider lectures still to be the most cost effective means of delivering the core syllabus to large cohorts of students. However, this does limit the scope for any optionality within teaching, the scope for small group work is reduced as is the opportunity to develop multi-professional learning or practice placements. Although novel teaching and learning techniques such as e-learning have expanded considerably over the past decade, schools of pharmacy have concentrated on lectures as the best way of coping with the huge expansion in student numbers. References [1] Council Directive. Concerning the coordination of provisions laid down by law, regulation or administrative action in respect of certain activities in the field of pharmacy. Official Journal of the European Communities 1985;85/432/EEC. [2] Wilson K, Jesson J, Langley C, Clarke L, Hatfield K. MPharm Programmes: Where are we now? Report commissioned by the Pharmacy Practice Research Trust., 2005.
Resumo:
Introduction-The pace of structural change in the UK health economies, the new focus on regulation and the breaking down of professional boundaries means that the Royal Pharmaceutical Society of Great Britain (RPSGB) has to continually review the scope, range and outputs of education provided by schools of pharmacy (SOPs). In SOPs, the focus is on equipping students with the knowledge, skills and attitudes necessary to successfully engage with the pre-registration year. The aim of this study [1] was to map current programmes and undergraduate experiences to inform the RPSGB debate. The specific objectives of this paper are to describe elements of the survey of final year undergraduates, to explore student opinions and experiences of their workload, teaching, learning and assessment. Material and methods-The three main research techniques were: (1) quantitative course document review, (2) qualitative staff interview and (3) quantitative student self completion survey. The questions in the survey were based on findings from exploratory focus group work with BPSA (British Pharmaceutical Students’ Association) members and were designed to ascertain if views expressed in the focus groups on the volume and format of assessments were held by the general student cohort. The student self completion questionnaire consisting of 31 questions, was administered in 2005 to all (n=1847) final year undergraduates, using a pragmatic mixture of methods. The sample was 15 SOPs within the UK (1 SOP opted out). The total response rate was 50.62% (n=935): it varied by SOP from 14.42% to 84.62%. The survey data were analysed (n=741) using SPSS, excluding non-UK students who may have undertaken part of their studies within a non-UK university. Results and discussion • 76% (n=562) respondents considered that the amount of formal assessment was about right, 21% (n=158) thought it was too much. • There was agreement that the MPharm seems to have more assessment than other courses, with 63% (n=463) strongly agreeing or agreeing. • The majority considered the balance between examinations and coursework was about right (67%, n=498), with 27% (n=198) agreeing that the balance was too far weighted towards examinations. • 57% (n=421) agreed that the focus of MPharm assessment was too much towards memorised knowledge, 40% (n=290) that it was about right. • 78% (n= 575) agreed with the statement “Assessments don’t measure the skills for being a pharmacist they just measure your knowledge base”. Only 10% (n=77) disagreed. • Similarly 49% (n=358) disagreed with, and 35% (n=256) were not sure about the statement “I consider that the assessments used in the MPharm course adequately measure the skills necessary to be a pharmacist”. Only 17% (n=124) agreed. Experience from this study shows the difficulty of administering survey instruments through UK Schools of Pharmacy. It is heavily dependent on timing, goodwill and finding the right person. The variability of the response rate between SOPs precluded any detailed analysis by School. Nevertheless, there are some interesting results. Issues raised in the exploratory focus group work about amount of assessment and over reliance on knowledge have been confirmed. There is a real debate to be had about the extent to which the undergraduate course, which must instil scientific knowledge, can provide students with the requisite qualities, skills, attitudes and behaviour that are more easily acquired in the pre-registration year. References [1] Wilson K, Jesson J, Langley C, Clarke L, Hatfield K. MPharm Programmes: Where are we now? Report commissioned by the Pharmacy Practice Research Trust., 2005.
Resumo:
Introduction: There is a growing public perception that serious medical error is commonplace and largely tolerated by the medical profession. The Government and medical establishment's response to this perceived epidemic of error has included tighter controls over practising doctors and individual stick-and-carrot reforms of medical practice. Discussion: This paper critically reviews the literature on medical error, professional socialization and medical student education, and suggests that common themes such as uncertainty, necessary fallibility, exclusivity of professional judgement and extensive use of medical networks find their genesis, in part, in aspects of medical education and socialization into medicine. The nature and comparative failure of recent reforms of medical practice and the tension between the individualistic nature of the reforms and the collegiate nature of the medical profession are discussed. Conclusion: A more theoretically informed and longitudinal approach to decreasing medical error might be to address the genesis of medical thinking about error through reforms to the aspects of medical education and professional socialization that help to create and perpetuate the existence of avoidable error, and reinforce medical collusion concerning error. Further changes in the curriculum to emphasize team working, communication skills, evidence-based practice and strategies for managing uncertainty are therefore potentially key components in helping tomorrow's doctors to discuss, cope with and commit fewer medical errors.
Resumo:
Despite concerns about the relevance of management education, there is relatively little evidence about whether graduates use the management tools and concepts they are taught. We address this gap with evidence from a survey of business school alumni adoption of tools typically taught in strategic management courses. Our findings show that four educational characteristics-level of formal education, frequency of management training, specificity of strategic management education, and time elapsed since formal education-drive adoption of strategy tools. Specifically, features such as postgraduate over undergraduate qualifications and frequent exposure to management training predispose greater user of strategy tools. However, other factors, such as time elapsed since formal education, are not as great a predictor of variation in use. We conclude with a predictive model of the relative weight and importance of educational and demographic characteristics on strategy tool adoption and discuss our findings in light of the relevance debate. © The Author(s) 2013.
Resumo:
This study explores the ongoing pedagogical development of a number of undergraduate design and engineering programmes in the United Kingdom. Observations and data have been collected over several cohorts to bring a valuable perspective to the approaches piloted across two similar university departments while trialling a number of innovative learning strategies. In addition to the concurrent institutional studies the work explores curriculum design that applies the principles of Co-Design, multidisciplinary and trans disciplinary learning, with both engineering and product design students working alongside each other through a practical problem solving learning approach known as the CDIO learning initiative (Conceive, Design Implement and Operate) [1]. The study builds on previous work presented at the 2010 EPDE conference: The Effect of Personality on the Design Team: Lessons from Industry for Design Education [2]. The subsequent work presented in this paper applies the findings to mixed design and engineering team based learning, building on the insight gained through a number of industrial process case studies carried out in current design practice. Developments in delivery also aligning the CDIO principles of learning through doing into a practice based, collaborative learning experience and include elements of the TRIZ creative problem solving technique [3]. The paper will outline case studies involving a number of mixed engineering and design student projects that highlight the CDIO principles, combined with an external industrial design brief. It will compare and contrast the learning experience with that of a KTP derived student project, to examine an industry based model for student projects. In addition key areas of best practice will be presented, and student work from each mode will be discussed at the conference.
Resumo:
This positional paper proposes a conceptual framework and methodological approach for use in a PhD study investigating the longer term educational and social impact of 'active' engineering focused interventions for children age 8-10 in the UK. The study will critically analyse how a child's participation in an engineering education activity contributes to the Engineering Capital that the child possesses; focusing on how the child's awareness and perceptions about engineering are affected. To achieve this aim it is proposed that Grounded Theory methodology be used to enable an in-depth analysis of participation from the perspective of the child participant. The study proposed will be longitudinal, taking place over three formative years for the education and career aspirations of the child, from age 8-10 to 11-13. Although the research is in its infancy, this paper will provide the opportunity to develop theory in an underdeveloped area of engineering education research.
Resumo:
This paper focuses upon the argument that the role played by the engineering profession within today's society has changed markedly over the past several years from providing the foundations for contemporary life to leading societal change and becoming one of the key driver's of future social development. Coining the term 'Engineering-Sociology' this paper contributes to engineering education and engineering education research by proposing a new paradigm upon which future engineering education programmes and engineering education research might build. Developed out of an approach to learning and teaching practice, Engineering-Sociology encapsulates both traditional and applied approaches to engineering education and engineering education research. It suggests that in order to meet future challenges there is a need to bring together what are generally perceived to be two diametrically opposed paradigms, namely engineering and sociology. Building on contemporary theoretical and pedagogical arguments in engineering education research, the paper concludes that by encouraging engineering educators to 'think differently', Engineering-Sociology can provide an approach to learning and teaching that both enhances the student experience and meets the changing needs of society.
Resumo:
With rapid increases in student fees reflecting moves towards a QUASI Market model of Higher Education in the UK and across much of the Western World[1], many universities find themselves having to meet progressively higher levels of student expectations[2]. This is particularly the case at undergraduate level, where increases in fees over the past decade have far exceeded inflation. Yet with so much attention on ‘consumer savvy’ undergraduates, the question of whether Master’s level students’ expectations are matched by their experiences is one which remains largely unanswered. Grounded in an empirically grounded approach to learning and teaching developed by the paper authors[3], this paper sets out to being to answer this question. In doing so it makes a distinctive contribution to debates about graduate level engineering education and concludes with a number of recommendations. Discussion: The ‘MSc: Managing Expectations’ Project analyses the expectations and experiences of Graduate level Engineering Management Students over a two year period. Focusingon the ‘student experience’, three main concepts are identified as being particular relevant to enhancing learning [3]: Relationships: Variety: Synergy. Relationships: Based on empirical research, the significance of Relationships within the academic environment is discussed with particular attention being paid to the value of students’ social and academic support networks, including academic tutoring. Variety: Grounded in a statistical analysis of ‘engagement data’ together with survey and interview findings, the concept of variety critically examines students’ perspectives and experiencesof different approaches to learning and teaching. Synergy: Possibly the most important concept discussed within this paper, the need for constructively aligned curriculum is extended to reflect the students’ apriori knowledge and experienceas well as employer and societal demands and expectations. The conclusion brings the different concepts within the discussion together, providing a set of practical recommendations for colleagues working both at graduate and undergraduate level. References 1.Gibbs, P. (2001) "Higher education as a market: a problem or solution?." Studies in Higher Education 26. 1. pp. 85-94. 2.Tricker, T., (2005) Student Expectations-How do we measure up. University of Sheffield. Available from: http://www.persons.org.uk/tricker%20paper.pdf Accessed 9/10/14 3.Clark, R. & Andrews, J. (2014). Relationships, Variety & Synergy [RVS]: The Vital Ingredients for Scholarship in Engineering Education? A Case-Study. European Journal of Engineering Education. 39.6. pp. 585-600.