2 resultados para ovarian development

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

An investigation was made into the nature and control of the annual reproductive cycle of the dace, Leuciscus leuciscus. It includes 1) a study of the natural reproductive cycle, 2) the use of Carp Pituitary Extract (CPE) to induce final maturation and ovulation in captive fish, 3) the effect of artificial light treatments on ovarian development and 4) the measurement of serum melatonin levels under different photoperiod regimes. Ovarian development was monitored by endocrinological data, notably serum cycles of 17-oestradiol (E2), testosterone (T), and calcium (as an index of vitellogenin), oocyte diameter, the gonadosomatic index and histological studies of the ovary. Under natural conditions, ovarian development can broadly be divided into 4 stages: 1) oogenesis which occurs immediately after spawning; 2) a primary growth phase (previtellogenic growth) prevalent between spawning and June; 3) a secondary growth phase (yolk vesicle plus vitellogenic growth) occurring between June and December and 4) final maturation and ovulation which occurs in mid-March. During the annual ovarian cycle, the sex steroids E2 and T showed two clear elevations. The first occurred initially in April followed by a rise in serum calcium levels. This subsequently initiated the appearance of yolk granules in the oocytes in June. The second rise occurred in September and levels were maintained until December, after which there was a decline in serum E2 levels. It is proposed that in the dace, high serum E2 levels between September and December were required to maintain vitellogenin production and therefore its uptake into the developing oocytes which occurred during this time, albeit at a slower rate than in the summer months. After December, prior to final maturation, whereas serum E2 and calcium levels declined, serum T levels remained elevated. In captivity, final maturation beyond the germinal vesicle migration stage failed to occur suggesting that the stimuli required for these events were absent. However ovulation could be induced by a single injection of CPE, which induced ovulation between 6 and 14 hours after treatment. Endocrine events associated with the artificial induction of spawning included a rise in serum levels of E2, T and the maturation inducing steroid 1720-dihydroxy progesterone. Photoperiodic manipulation demonstrated that whereas short or increasing daylengths were stimulatory to ovarian development, long days delayed development. Changes from long to short and constant short daylengths early in the reproductive cycle advanced maturation (up to 5 months), suggesting that the stimulus for ovarian development and maturation was a short day. However, experiments conducted later in the reproductive cycle demonstrated that only a simulated ambient photoperiod could induce final maturation. It is proposed therefore that under natural conditions the environmental stimulus for ovarian development and final maturation are short and increasing daylengths respectively. Further support that photoperiod is the dominant timing cue in this species was provided by the pattern of serum melatonin levels. Under different photoperiod treatments, serum melatonin, which is believed to be the chemical transducer of photoperiodic information (similar to other photoperiodic species) was elevated for the duration of the dark phase, indicating that the dace at least has the ability to `measure' changes in daylength.