4 resultados para outlier detection

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper, addresses the problem of novelty detection in the case that the observed data is a mixture of a known 'background' process contaminated with an unknown other process, which generates the outliers, or novel observations. The framework we describe here is quite general, employing univariate classification with incomplete information, based on knowledge of the distribution (the 'probability density function', 'pdf') of the data generated by the 'background' process. The relative proportion of this 'background' component (the 'prior' 'background' 'probability), the 'pdf' and the 'prior' probabilities of all other components are all assumed unknown. The main contribution is a new classification scheme that identifies the maximum proportion of observed data following the known 'background' distribution. The method exploits the Kolmogorov-Smirnov test to estimate the proportions, and afterwards data are Bayes optimally separated. Results, demonstrated with synthetic data, show that this approach can produce more reliable results than a standard novelty detection scheme. The classification algorithm is then applied to the problem of identifying outliers in the SIC2004 data set, in order to detect the radioactive release simulated in the 'oker' data set. We propose this method as a reliable means of novelty detection in the emergency situation which can also be used to identify outliers prior to the application of a more general automatic mapping algorithm. © Springer-Verlag 2007.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Satellite-borne scatterometers are used to measure backscattered micro-wave radiation from the ocean surface. This data may be used to infer surface wind vectors where no direct measurements exist. Inherent in this data are outliers owing to aberrations on the water surface and measurement errors within the equipment. We present two techniques for identifying outliers using neural networks; the outliers may then be removed to improve models derived from the data. Firstly the generative topographic mapping (GTM) is used to create a probability density model; data with low probability under the model may be classed as outliers. In the second part of the paper, a sensor model with input-dependent noise is used and outliers are identified based on their probability under this model. GTM was successfully modified to incorporate prior knowledge of the shape of the observation manifold; however, GTM could not learn the double skinned nature of the observation manifold. To learn this double skinned manifold necessitated the use of a sensor model which imposes strong constraints on the mapping. The results using GTM with a fixed noise level suggested the noise level may vary as a function of wind speed. This was confirmed by experiments using a sensor model with input-dependent noise, where the variation in noise is most sensitive to the wind speed input. Both models successfully identified gross outliers with the largest differences between models occurring at low wind speeds. © 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explains some drawbacks on previous approaches for detecting influential observations in deterministic nonparametric data envelopment analysis models as developed by Yang et al. (Annals of Operations Research 173:89-103, 2010). For example efficiency scores and relative entropies obtained in this model are unimportant to outlier detection and the empirical distribution of all estimated relative entropies is not a Monte-Carlo approximation. In this paper we developed a new method to detect whether a specific DMU is truly influential and a statistical test has been applied to determine the significance level. An application for measuring efficiency of hospitals is used to show the superiority of this method that leads to significant advancements in outlier detection. © 2014 Springer Science+Business Media New York.