10 resultados para optimisation algorithms
em Aston University Research Archive
Resumo:
Inference and optimisation of real-value edge variables in sparse graphs are studied using the tree based Bethe approximation optimisation algorithms. Equilibrium states of general energy functions involving a large set of real edge-variables that interact at the network nodes are obtained for networks in various cases. These include different cost functions, connectivity values, constraints on the edge bandwidth and the case of multiclass optimisation.
Resumo:
A new approach to optimisation is introduced based on a precise probabilistic statement of what is ideally required of an optimisation method. It is convenient to express the formalism in terms of the control of a stationary environment. This leads to an objective function for the controller which unifies the objectives of exploration and exploitation, thereby providing a quantitative principle for managing this trade-off. This is demonstrated using a variant of the multi-armed bandit problem. This approach opens new possibilities for optimisation algorithms, particularly by using neural network or other adaptive methods for the adaptive controller. It also opens possibilities for deepening understanding of existing methods. The realisation of these possibilities requires research into practical approximations of the exact formalism.
Resumo:
Radial Basis Function networks with linear outputs are often used in regression problems because they can be substantially faster to train than Multi-layer Perceptrons. For classification problems, the use of linear outputs is less appropriate as the outputs are not guaranteed to represent probabilities. We show how RBFs with logistic and softmax outputs can be trained efficiently using the Fisher scoring algorithm. This approach can be used with any model which consists of a generalised linear output function applied to a model which is linear in its parameters. We compare this approach with standard non-linear optimisation algorithms on a number of datasets.
Resumo:
Radial Basis Function networks with linear outputs are often used in regression problems because they can be substantially faster to train than Multi-layer Perceptrons. For classification problems, the use of linear outputs is less appropriate as the outputs are not guaranteed to represent probabilities. In this paper we show how RBFs with logistic and softmax outputs can be trained efficiently using algorithms derived from Generalised Linear Models. This approach is compared with standard non-linear optimisation algorithms on a number of datasets.
Resumo:
Ant colony optimisation algorithms model the way ants use pheromones for marking paths to important locations in their environment. Pheromone traces are picked up, followed, and reinforced by other ants but also evaporate over time. Optimal paths attract more pheromone and less useful paths fade away. The main innovation of the proposed Multiple Pheromone Ant Clustering Algorithm (MPACA) is to mark objects using many pheromones, one for each value of each attribute describing the objects in multidimensional space. Every object has one or more ants assigned to each attribute value and the ants then try to find other objects with matching values, depositing pheromone traces that link them. Encounters between ants are used to determine when ants should combine their features to look for conjunctions and whether they should belong to the same colony. This paper explains the algorithm and explores its potential effectiveness for cluster analysis. © 2014 Springer International Publishing Switzerland.
Resumo:
Ant Colony Optimisation algorithms mimic the way ants use pheromones for marking paths to important locations. Pheromone traces are followed and reinforced by other ants, but also evaporate over time. As a consequence, optimal paths attract more pheromone, whilst the less useful paths fade away. In the Multiple Pheromone Ant Clustering Algorithm (MPACA), ants detect features of objects represented as nodes within graph space. Each node has one or more ants assigned to each feature. Ants attempt to locate nodes with matching feature values, depositing pheromone traces on the way. This use of multiple pheromone values is a key innovation. Ants record other ant encounters, keeping a record of the features and colony membership of ants. The recorded values determine when ants should combine their features to look for conjunctions and whether they should merge into colonies. This ability to detect and deposit pheromone representative of feature combinations, and the resulting colony formation, renders the algorithm a powerful clustering tool. The MPACA operates as follows: (i) initially each node has ants assigned to each feature; (ii) ants roam the graph space searching for nodes with matching features; (iii) when departing matching nodes, ants deposit pheromones to inform other ants that the path goes to a node with the associated feature values; (iv) ant feature encounters are counted each time an ant arrives at a node; (v) if the feature encounters exceed a threshold value, feature combination occurs; (vi) a similar mechanism is used for colony merging. The model varies from traditional ACO in that: (i) a modified pheromone-driven movement mechanism is used; (ii) ants learn feature combinations and deposit multiple pheromone scents accordingly; (iii) ants merge into colonies, the basis of cluster formation. The MPACA is evaluated over synthetic and real-world datasets and its performance compares favourably with alternative approaches.
Resumo:
A multi-chromosome GA (Multi-GA) was developed, based upon concepts from the natural world, allowing improved flexibility in a number of areas including representation, genetic operators, their parameter rates and real world multi-dimensional applications. A series of experiments were conducted, comparing the performance of the Multi-GA to a traditional GA on a number of recognised and increasingly complex test optimisation surfaces, with promising results. Further experiments demonstrated the Multi-GA's flexibility through the use of non-binary chromosome representations and its applicability to dynamic parameterisation. A number of alternative and new methods of dynamic parameterisation were investigated, in addition to a new non-binary 'Quotient crossover' mechanism. Finally, the Multi-GA was applied to two real world problems, demonstrating its ability to handle mixed type chromosomes within an individual, the limited use of a chromosome level fitness function, the introduction of new genetic operators for structural self-adaptation and its viability as a serious real world analysis tool. The first problem involved optimum placement of computers within a building, allowing the Multi-GA to use multiple chromosomes with different type representations and different operators in a single individual. The second problem, commonly associated with Geographical Information Systems (GIS), required a spatial analysis location of the optimum number and distribution of retail sites over two different population grids. In applying the Multi-GA, two new genetic operators (addition and deletion) were developed and explored, resulting in the definition of a mechanism for self-modification of genetic material within the Multi-GA structure and a study of this behaviour.
Resumo:
In this thesis, standard algorithms are used to carry out the optimisation of cold-formed steel purlins such as zed, channel and sigma sections, which are assumed to be simply supported and subjected to a gravity load. For zed, channel and sigma section, the local buckling, distortional buckling and lateral-torsional buckling are considered respectively herein. Currently, the local buckling is based on the BS 5950-5:1998 and EN 1993-1-3:2006. The distortional buckling is calculated by the direct strength method employing the elastic distortional buckling which is calculated by three available approaches such as Hancock (1995), Schafer and Pekoz (1998), Yu (2005). In the optimisation program, the lateral-torsional buckling based on BS 5950-5:1998, AISI and analytical model of Li (2004) are investigated. For the optimisation program, the programming codes are written for optimisation of channel, zed and sigma beam. The full study has been coded into a computer-based analysis program (MATLAB).
Resumo:
Since wireless network optimisations can be typically designed and evaluated independently of one another under the assumption that they can be applied jointly or independently. In this paper, we have analysis some rate algorithms in wireless networks. Since wireless networks have different standards in IEEE with peculiar features, data rate is one of those important parameters that wireless networks depend on for performances. The optimisation of this network is dependent on the behaviour of a particular rate algorithm in a network scenario. We have considered some first and second generation's rate algorithm, and it is all about selecting an appropriate data rate that any available wireless network can utilise for transmission in order to achieve a good performance. We have designed and analysis a wireless network and results obtained for some rate algorithms, like ONOE and AARF.
Resumo:
Multi-agent algorithms inspired by the division of labour in social insects and by markets, are applied to a constrained problem of distributed task allocation. The efficiency (average number of tasks performed), the flexibility (ability to react to changes in the environment), and the sensitivity to load (ability to cope with differing demands) are investigated in both static and dynamic environments. A hybrid algorithm combining both approaches, is shown to exhibit improved efficiency and robustness. We employ nature inspired particle swarm optimisation to obtain optimised parameters for all algorithms in a range of representative environments. Although results are obtained for large population sizes to avoid finite size effects, the influence of population size on the performance is also analysed. From a theoretical point of view, we analyse the causes of efficiency loss, derive theoretical upper bounds for the efficiency, and compare these with the experimental results.