44 resultados para optical switching
em Aston University Research Archive
Resumo:
High-speed optical clock recovery, demultiplexing and data regeneration will be integral parts of any future photonic network based on high bit-rate OTDM. Much research has been conducted on devices that perform these functions, however to date each process has been demonstrated independently. A very promising method of all-optical switching is that of a semiconductor optical amplifier-based nonlinear optical loop mirror (SOA-NOLM). This has various advantages compared with the standard fiber NOLM, most notably low switching power, compact size and stability. We use the SOA-NOLM as an all-optical mixer in a classical phase-locked loop arrangement to achieve optical clock recovery, while at the same time achieving data regeneration in a single compact device
Resumo:
This thesis presents several advanced optical techniques that are crucial for improving high capacity transmission systems. The basic theory of optical fibre communications are introduced before optical solitons and their usage in optically amplified fibre systems are discussed. The design, operation, limitations and importance of the recirculating loop are illustrated. The crucial role of dispersion management in the transmission systems is then considered. Two of the most popular dispersion compensation methods - dispersion compensating fibres and fibre Bragg gratings - are emphasised. A tunable dispersion compensator is fabricated using the linear chirped fibre Bragg gratings and a bending rig. Results show that it is capable of compensating not only the second order dispersion, but also higher order dispersion. Stimulated Raman Scattering (SRS) are studied and discussed. Different dispersion maps are performed for all Raman amplified standard fibre link to obtain maximum transmission distances. Raman amplification is used in most of our loop experiments since it improves the optical signal-to-noise ratio (OSNR) and significantly reduces the nonlinear intrachannel effects of the transmission systems. The main body of the experimental work is concerned with nonlinear optical switching using the nonlinear optical loop mirrors (NOLMs). A number of different types of optical loop mirrors are built, tested and implemented in the transmission systems for noise suppression and 2R regeneration. Their results show that for 2R regeneration, NOLM does improve system performance, while NILM degrades system performance due to its sensitivity to the input pulse width, and the NALM built is unstable and therefore affects system performance.
Resumo:
The current optical communications network consists of point-to-point optical transmission paths interconnected with relatively low-speed electronic switching and routing devices. As the demand for capacity increases, then higher speed electronic devices will become necessary. It is however hard to realise electronic chip-sets above 10 Gbit/s, and therefore to increase the achievable performance of the network, electro-optic and all-optic switching and routing architectures are being investigated. This thesis aims to provide a detailed experimental analysis of high-speed optical processing within an optical time division multiplexed (OTDM) network node. This includes the functions of demultiplexing, 'drop and insert' multiplexing, data regeneration, and clock recovery. It examines the possibilities of combining these tasks using a single device. Two optical switching technologies are explored. The first is an all-optical device known as 'semiconductor optical amplifier-based nonlinear optical loop mirror' (SOA-NOLM). Switching is achieved by using an intense 'control' pulse to induce a phase shift in a low-intensity signal propagating through an interferometer. Simultaneous demultiplexing, data regeneration and clock recovery are demonstrated for the first time using a single SOA-NOLM. The second device is an electroabsorption (EA) modulator, which until this thesis had been used in a uni-directional configuration to achieve picosecond pulse generation, data encoding, demultiplexing, and 'drop and insert' multiplexing. This thesis presents results on the use of an EA modulator in a novel bi-directional configuration. Two independent channels are demultiplexed from a high-speed OTDM data stream using a single device. Simultaneous demultiplexing with stable, ultra-low jitter clock recovery is demonstrated, and then used in a self-contained 40 Gbit/s 'drop and insert' node. Finally, a 10 GHz source is analysed that exploits the EA modulator bi-directionality to increase the pulse extinction ratio to a level where it could be used in an 80 Gbit/s OTDM network.
Resumo:
This thesis presents experimental investigations of the use of semiconductor optical amplifiers in a nonlinear loop mirror (SOA-NOLM) and its application in all-optical processing. The techniques used are mainly experimental and are divided into three major applications. Initially the semiconductor optical amplifier, SOA, is experimentally characterised and the optimum operating condition is identified. An interferometric switch based on a Sagnac loop with the SOA as the nonlinear element is employed to realise all-optical switching. All-optical switching is a very attractive alternative to optoelectronic conversion because it avoids the conversion from the optical to the electronic domain and back again. The first major investigation involves a carrier suppressed return to zero, CSRZ, format conversion and transmission. This study is divided into single channel and four channel WDM respectively. The optical bandwidth which limits the conversion is investigated. The improvement of the nonlinear tolerance in the CSRZ transmission is shown which shows the suitability of this format for enhancing system performance. Second, a symmetrical switching window is studied in the SOA-NOLM where two similar control pulses are injected into the SOA from opposite directions. The switching window is symmetric when these two control pulses have the same power and arrive at the same time in the SOA. Finally, I study an all-optical circulating shift register with an inverter. The detailed behaviour of the blocks of zeros and ones has been analysed in terms of their transient measurement. Good agreement with a simple model of the shift register is obtained. The transient can be reduced but it will affect the extinction ratio of the pulses.
Resumo:
We experimentally demonstrate an all-optical binary counter composed of four semiconductor optical amplifier based all-optical switching gates. The time-of-flight optical circuit operates with bit-differential delays between the exclusive-OR gate used for modulo-2 binary addition and the AND gate used for binary carry detection. A movie of the counter operating in real time is presented.
Resumo:
High-speed optical clock recovery, demultiplexing and data regeneration will be integral parts of any future photonic network based on high bit-rate OTDM. Much research has been conducted on devices that perform these functions, however to date each process has been demonstrated independently. A very promising method of all-optical switching is that of a semiconductor optical amplifier-based nonlinear optical loop mirror (SOA-NOLM). This has various advantages compared with the standard fiber NOLM, most notably low switching power, compact size and stability. We use the SOA-NOLM as an all-optical mixer in a classical phase-locked loop arrangement to achieve optical clock recovery, while at the same time achieving data regeneration in a single compact device
Resumo:
The development of an all-optical communications infrastructure requires appropriate optical switching devices and supporting hardware. This thesis presents several novel fibre lasers which are useful pulse sources for high speed optical data processing and communications. They share several attributes in common: flexibility, stability and low-jitter output. They all produce short (picosecond) and are suitable as sources for soliton systems. The lasers are all-fibre systems using erbium-doped fibre for gain, and are actively-modelocked using a dual-wavelength nonlinear optical loop mirror (NOLM) as a modulator. Control over the operating wavelength and intra-cavity dispersion is obtained using a chirped in-fibre Bragg grating.Systems operating both at 76MHz and gigahertz frequencies are presented, the latter using a semiconductor laser amplifier to enhance nonlinear action in the loop mirror. A novel dual-wavelength system in which two linear cavities share a common modulator is presented with results which show that the jitter between the two wavelengths is low enough for use in switching experiments with data rates of up to 130Gbit/s.
Resumo:
Thermal spin transition (spin crossover), one of the most fascinating dynamic electronic structure phenomena occurring in coordination compounds of third row transition metal ions, mostly of iron(II), iron(III) and cobalt(II) with critical ligand field strengths competing with the spin pairing energy, has attracted increasing attention by many research groups. One of the reasons is the promising potential for practical applications. In this chapter we intend to cover essential recent work, primarily accomplished within the European research network on “Thermal and Optical Switching of Molecular Spin States (TOSS)”. New spin crossover compounds and their thermal spin transition behaviour, also under applied pressure, novel effects observed by irradiation and magnetic field, will be discussed. Progress in theoretical treatments of spin crossover phenomena, particularly cooperativity, will be briefly outlined. The chapter concludes with a summary of research highlights published by the partner laboratories of the TMR network TOSS.
Resumo:
We demonstrate bandpass nonlinear switching, using a novel device configuration based on a nonlinear-optical loop mirror and an in-fiber Bragg grating. Self-switching is demonstrated in the soliton regime by use of an asymmetrically arranged in-fiber Bragg grating as a wavelength-selective element. In addition, we adapt the configuration to perform efficient two-wavelength switching.
Resumo:
We demonstrate multiple-peaked switching in a nonlinear-optical loop mirror and present an experimental investigation of device cascading in the soliton regime based on a sequence of two independent nonlinear-optical loop mirrors. Cascading leads to an enhanced switching response with sharper switching edges, flattened peaks, and increased interpeak extinction ratios. We observe that pulses emerging from the cascade retain the sech2 temporal profile of a soliton with minimal degradation in the spectral characteristics.
Resumo:
The application of orthogonal frequency-division multiplexing (OFDM) in an optical burst-switched system employing a single fast switching sample grating-distributed Bragg reflector (SG-DBR) laser is demonstrated experimentally. The effect of filter profiles compatible with 50, 25, and 12.5 GHz wavelength-division multiplexing grids on the system is investigated with system performance examined in terms of error vector magnitude per subcarrier for OFDM burst data beginning at various times after a switching event. Additionally the placement of the OFDM training sequence within the data burst and its effect on the system is investigated.
Resumo:
Nonlinear optical loop mirror (NOLM) requires breaking the loop symmetry to enable the counter propagating pulses to acquire a differential π phase shift. This is achieved with either an asymmetric fused fibre coupler at the input or by the inclusion of an asymmetrically located gain or loss element within the loop. By introducing a frequency selective loss element, nonlinear switching may be confined to a narrow band of wavelengths or multiple wavelengths. This configuration may have applications in time-wavelength demultiplexing. We demonstrate this technique of bandpass switching in the soliton regime using a fibre-Bragg grating reflector as the wavelength dependent loss.
Resumo:
A novel device configuration is used to demonstrate wavelength-confined, a bandpass, switching in a nonlinear-optical loop mirror (WOLM). Demonstrated is a self-switching in the soliton regime using a partially reflecting Bragg grating as a wavelength-dependent loss element. Two wavelength operation in which a signal is switched through the use of cross phase modulation, are demonstrated. Observed is the operation of the device confined to wavelengths defined by the grating reflection band.
Resumo:
Crosstalk caused by switching events in fast tunable lasers in an optical label switching (OLS) system is investigated for the first time. A wavelength-division-multiplexed OLS system based on subcarrier multiplexed labels is presented which employs a 40-Gb/s duobinary payload and a 155-Mb/s label on a 40-GHz subcarrier. Degradation in system performance as the transmitters switch between different channels is then characterized in terms of the frequency drift of the tunable laser.