8 resultados para online blended learning

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The National Institute for Transport and Logistics (NITL) is Ireland’s centre of excellence for supply chain management (SCM). As part of its mission to promote the development of supply chain expertise in Irish business, it designs and delivers executive modular learning programmes. In 2004, as part of a drive to create more flexible learning opportunities for course participants, NITL designed and implemented an eLearning programme, which involved converting traditionally tutored modules to online modules. This paper describes the rationale behind this initiative and the significance of technology as an enabling tool for executive education, as well as detailing the design and implementation processes for the pilot module. The paper concludes with a critique of the expected and actual benefits realised, as well as future development considerations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research explored how a more student-directed learning design can support the creation of togetherness and belonging in a community of distance learners in formal higher education. Postgraduate students in a New Zealand School of Education experienced two different learning tasks as part of their online distance learning studies. The tasks centered around two online asynchronous discussions each for the same period of time and with the same group of students, but following two different learning design principles. All messages were analyzed using a twostep analysis process, content analysis and social network analysis. Although the findings showed a balance of power between the tutor and the students in the first high e-moderated activity, a better pattern of group interaction and community feeling was found in the low e-moderated activity. The paper will discuss the findings in terms of the implications for learning design and the role of the tutor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the dynamics of on-line learning in multilayer neural networks where training examples are sampled with repetition and where the number of examples scales with the number of network weights. The analysis is carried out using the dynamical replica method aimed at obtaining a closed set of coupled equations for a set of macroscopic variables from which both training and generalization errors can be calculated. We focus on scenarios whereby training examples are corrupted by additive Gaussian output noise and regularizers are introduced to improve the network performance. The dependence of the dynamics on the noise level, with and without regularizers, is examined, as well as that of the asymptotic values obtained for both training and generalization errors. We also demonstrate the ability of the method to approximate the learning dynamics in structurally unrealizable scenarios. The theoretical results show good agreement with those obtained by computer simulations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose and analyze two different Bayesian online algorithms for learning in discrete Hidden Markov Models and compare their performance with the already known Baldi-Chauvin Algorithm. Using the Kullback-Leibler divergence as a measure of generalization we draw learning curves in simplified situations for these algorithms and compare their performances.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a model for measuring personal knowledge development in online learning environments. It is based on Nonaka‘s SECI model of organisational knowledge creation. It is argued that Socialisation is not a relevant mode in the context of online learning and was therefore not covered in the measurement instrument. Therefore, the remaining three of SECI‘s knowledge conversion modes, namely Externalisation, Combination, and Internalisation were used and a measurement instrument was created which also examines the interrelationships between the three modes. Data was collected using an online survey, in which online learners report on their experiences of personal knowledge development in online learning environments. In other words, the instrument measures the magnitude of online learners‘ Externalisation and combination activities as well as their level of internalisation, which is the outcome of their personal knowledge development in online learning.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present and analyze three different online algorithms for learning in discrete Hidden Markov Models (HMMs) and compare their performance with the Baldi-Chauvin Algorithm. Using the Kullback-Leibler divergence as a measure of the generalization error we draw learning curves in simplified situations and compare the results. The performance for learning drifting concepts of one of the presented algorithms is analyzed and compared with the Baldi-Chauvin algorithm in the same situations. A brief discussion about learning and symmetry breaking based on our results is also presented. © 2006 American Institute of Physics.