2 resultados para obese subjects

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Type 2 diabetes is an insidious disorder, with micro and/or macrovascular and nervous damage occurring in many patients before diagnosis. This damage is caused by hyperglycaemia and the diverse effects of insulin resistance. Obesity, in particular central obesity, is a strong pre-disposing factor for type 2 diabetes. Skeletal muscle is the main site of insulin-stimulated glucose disposal and appears to be the first organ that becomes insulin resistant in the diabetic state, with later involvement of adipose tissue and the liver. This study has investigated the use of novel agents to ameliorate insulin-resistance in skeletal muscle as a means of identifying intervention sites against insulin resistance and of improving glucose uptake and metabolism by skeletal muscle. Glucose uptake was measured in vitro by cultured L6 myocytes and isolated muscles from normal and obese diabetic ob/ob mice, using either the tritiated non-metabolised glucose analogue 2-deoxy-D-glucose or by glucose disposal. Agents studied included lipoic acid, isoferulic acid, bradykinin, lipid mobilising factor (provisionally synonymous with Zinca2 glycoprotein) and the trace elements lithium, selenium and chromium. The putative role of TNFa in insulin resistance was also investigated. Lipoic acid improved insulin-stimulated glucose uptake in normal and insulin resistance murine muscles, as well as cultured myocytes. Isoferulic acid, bradykinin and LMF also produced a transient increase in glucose uptake in cultured myocytes. Physiological concentrations of TNFa were found to cause insulin resistance in cultured, but no in excised murine muscles. The effect of the M2 metabolite of the satiety-inducing agent sibutramine on lipolysis in excised murine and human adipocytes was also investigated. M2 increased lipolysis from normal lean and obese ob/ob mouse adipocytes. Arguably the most important observation was that M2 also increased the lipolytic rate in adipocytes from catecholamine resistant obese subjects. The studies reported in this thesis indicate that a diversity of agents can improve glucose uptake and ameliorate insulin resistance. It is likely that these agents are acting via different pathways. This thesis has also shown that M2 can induce lipolysis in both rodent and human adipocytes. M2 hence has potential to directly reduce adiposity, in addition to well documented effects via the central nervous system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sibutramine is a satiety-inducing serotonin-noradrenaline reuptake inhibitor that acts predominantly via its primary and secondary metabolites. This study investigates the possibility that sibutramine and/or its metabolites could act directly on white adipose tissue to increase lipolysis. Adipocytes were isolated by a collagenase digestion procedure from homozygous lean (+/+) and obese-diabetic ob/ob mice, and from lean nondiabetic human subjects. The lipolytic activity of adipocyte preparations was measured by the determination of glycerol release over a 2-hour incubation period. The primary amine metabolite of sibutramine M2, caused a concentration-dependent stimulation of glycerol release by murine lean and obese adipocytes (maximum increase by 157 ± 22 and 245 ± 1696, respectively, p < 0.05). Neither sibutramine nor its secondary amine metabolite M1 had any effect on lipolytic activity. Preliminary studies indicated that M2-induced lipolysis was mediated via a beta-adrenergic action. The non-selective beta-adrenoceptor antagonist propranolol (10-6M) strongly inhibited M2-stimulated lipolysis in lean and obese murine adipocytes. M2 similarly increased lipolysis by isolated human omental and subcutaneous adipocytes (maximum increase by 194 ± 33 and 136 ± 4%, respectively, p < 0.05) with EC50 values of 12 nM and 3 nM, respectively. These results indicate that the sibutramine metabolite M2 can act directly on murine and human adipose tissue to increase lipolysis via a pathway involving beta-adrenoceptors. © Georg Thieme Verlag KG Stuttgart.