5 resultados para nuclei grow

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The size frequency distributions of diffuse, primitive and classic β- amyloid (Aβ) deposits were studied in single sections of cortical tissue from patients with Alzheimer's disease (AD) and Down's syndrome (DS) and compared with those predicted by the log-normal model. In a sample of brain regions, these size distributions were compared with those obtained by serial reconstruction through the tissue and the data used to adjust the size distributions obtained in single sections. The adjusted size distributions of the diffuse, primitive and classic deposits deviated significantly from a log-normal model in AD and DS, the greatest deviations from the model being observed in AD. More Aβ deposits were observed close to the mean and fewer in the larger size classes than predicted by the model. Hence, the growth of Aβ deposits in AD and DS does not strictly follow the log-normal model, deposits growing to within a more restricted size range than predicted. However, Aβ deposits grow to a larger size in DS compared with AD which may reflect differences in the mechanism of Aβ formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The size frequency distributions of diffuse, primitive and cored senile plaques (SP) were studied in single sections of the temporal lobe from 10 patients with Alzheimer’s disease (AD). The size distribution curves were unimodal and positively skewed. The size distribution curve of the diffuse plaques was shifted towards larger plaques while those of the neuritic and cored plaques were shifted towards smaller plaques. The neuritic/diffuse plaque ratio was maximal in the 11 – 30 micron size class and the cored/ diffuse plaque ratio in the 21 – 30 micron size class. The size distribution curves of the three types of plaque deviated significantly from a log-normal distribution. Distributions expressed on a logarithmic scale were ‘leptokurtic’, i.e. with excess of observations near the mean. These results suggest that SP in AD grow to within a more restricted size range than predicted from a log-normal model. In addition, there appear to be differences in the patterns of growth of diffuse, primitive and cored plaques. If neuritic and cored plaques develop from earlier diffuse plaques, then smaller diffuse plaques are more likely to be converted to mature plaques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lichens meet some but not all of the criteria that must be fulfilled by inhabitants of Mars. They could withstand many aspects of the hostile environment especially if they live within the rocks as they do in the dry valleys of Antarctica. Lichens, however, are dual organisms and we have to presuppose the successful establishment of a variety of microorganisms on Mars and especially algae and fungi. To date, the evidence for the existence of microorganisms in Martian meteorites is controversial and there is no conclusive evidence of present life on the surface. In addition, if endolithic lichens have evolved on Mars and are alive today they would be subjected to a considerably more hostile environment than the extreme environments on Earth, which are regarded as at the limit of tolerance of present day lichens. The lack of liquid water over most of the surface and the problem of obtaining sufficient nitrogen resources are particular problems for Martian lichens. Further landings on Mars, scheduled for 2005 and future missions are likely to increase substantially our knowledge of the Martian surface and the possibilities for life by attempting to bring back samples of rock and minerals. In addition, the use of techniques such as Laser Raman technology and the development of gas chromatographic methods for use in space increase the probability that an answer to the question of whether lichens have existed on Mars will be obtained in the near future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the absence of external stimuli, the mammalian brain continues to display a rich variety of spontaneous activity. Such activity is often highly stereotypical, is invariably rhythmic, and can occur with periodicities ranging from a few milliseconds to several minutes. Recently, there has been a particular resurgence of interest in fluctuations in brain activity occurring at <0.1 Hz, commonly referred to as very slow or infraslow oscillations (ISOs). Whilst this is primarily due to the emergence of functional magnetic resonance imaging (fMRI) as a technique which has revolutionized the study of human brain dynamics, it is also a consequence of the application of full band electroencephalography (fbEEG). Despite these technical advances, the precise mechanisms which lead to ISOs in the brain remain unclear. In a host of animal studies, one brain region that consistently shows oscillations at <0.1 Hz is the thalamus. Importantly, similar oscillations can also be observed in slices of isolated thalamic relay nuclei maintained in vitro. Here, we discuss the nature and mechanisms of these oscillations, paying particular attention to a potential role for astrocytes in their genesis. We also highlight the relationship between this activity and ongoing local network oscillations in the alpha (a; ~8-13 Hz) band, drawing clear parallels with observations made in vivo. Last, we consider the relevance of these thalamic ISOs to the pathological activity that occurs in certain types of epilepsy.