5 resultados para nosocomial

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Staphylococci are among the leading causes of nosocomial infections. Increasing insusceptibility to β-lactams and the glycopeptides complicates treatment of these infections. This review examines the current status and future perspectives for the therapy of infections caused by Staphylococcus aureus and coagulase-negative staphylococci. © 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clostridium difficile is at present one of the most common nosocomial infections in the developed world. Hypervirulent strains (PCR ribotype 027) of C. difficile which produce enhanced levels of toxins have also been associated with other characteristics such as a greater rate of sporulation and resistance to fluoroquinolones. Infection due to C. difficile PCR ribotype 027 has also been associated with greater rates of morbidity and mortality. The aim of this thesis was to investigate both the phenotypic and genotypic characteristics of two populations of toxigenic clinical isolates of C. difficile which were recovered from two separate hospital trusts within the UK. Phenotypic characterisation of the isolates was undertaken using analytical profile indexes (APIs), minimum inhibitory concentrations(MICs) and S-layer protein typing. In addition to this, isolates were also investigated for the production of a range of extracellular enzymes as potential virulence factors. Genotypic characterisation was performed using a random amplification of polymorphic DNA(RAPD) PCR protocol which was fully optimised in this study, and the gold standard method, PCR ribotyping. The discriminatory power of both methods was compared and the similarity between the different isolates also analysed. Associations between the phenotypic and genotypic characteristics and the recovery location of the isolate were then investigated. Extracellular enzyme production and API testing revealed little variation between the isolates; with S-layer typing demonstrating low discrimination. Minimum inhibitory concentrations did not identify any resistance towards either vancomycin or metronidazole; there were however significant differences in the distribution of antibiogram profiles of isolates recovered from the two different trusts. The RAPD PCR protocol was successfully optimised and alongside PCR ribotyping, effectively typed all of the clinical isolates and also identified differences in the number of types defined between the two locations. Both PCR ribotyping and RAPD demonstrated similar discriminatory power; however, the two genotyping methods did not generate amplicons that mapped directly onto each other and therefore clearly characterised isolates based on different genomic markers. The RAPD protocol also identified different subtypes within PCR ribotypes, therefore demonstrating that all isolates defined as a particular PCR ribotype were not the same strain. No associations could be demonstrated between the phenotypic and genotypic characteristics observed; however, the location from which an isolate was recovered did appear to influence antibiotic resistance and genotypic characteristics. The phenotypic and genotypic characteristics observed amongst the C. difficile isolates in this study, may provide a basis for the identification of further targets which may be potentially incorporated into future methods for the characterisation of C. difficile isolates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Staphylococcus epidermidis are common Gram-positive bacteria and are responsible for a number of life-threatening nosocomial infections. Treatment of S. epidermidis infection is problematic because the organism is usually resistant to many antibiotics. The high degree of resistance of this organism to a range of antibiotics and disinfectants is widely known. The aims of this thesis were to investigate and evaluate the susceptibility of isolates of S. epidermidis from various infections to chlorhexidine (CHX) and to other disinfectants such as benzalkonium chloride (BKC), triclosan (TLN) and povidone-iodine (PI). In addition, the mechanisms of resistance of S. epidermidis to chlorhexidine (the original isolates and strains adapted to chlorhexidine by serial passage) were examined and co-resistance to clinically relevant antibiotics investigated. In 3 of the 11 S. epidermidis strains passaged in increasing concentrations of chlorhexidine, resistance to the disinfectant arose (16-fold). These strains were examined further, each showing stable chlorhexidine resistance. Co-resistance to other disinfectants such as BKC, TLN and PI and changes in cell surface hydrophobicity were observed. Increases in resistance were accompanied by an increase in the proportion of neutral lipids and phospholipids in the cell membrane. This increase was most marked in diphosphatidylglycerol. These observations suggest that some strains of S. epidermidis can become resistant to chlorhexidine and related disinfectants/antiseptics by continual exposure. The mechanisms of resistance appear to be related to changes in membrane lipid compositions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: A rapid random amplification of polymorphic DNA (RAPD) technique was developed to distinguish between strains of coagulase-negative staphylococci (CoNS) involved in central venous catheter (CVC)-related bloodstream infection. Its performance was compared with that of pulsed-field gel electrophoresis (PFGE). Methods: Patients at the University Hospital Birmingham NHS Foundation Trust, U.K. who underwent stem cell transplantation and were diagnosed with CVC-related bloodstream infection due to CoNS whilst on the bone marrow transplant unit were studied. Isolates of CoNS were genotyped by PFGE and RAPD, the latter employing a single primer and a simple DNA extraction method. Results: Both RAPD and PFGE were highly discriminatory (Simpson's diversity index, 0.96 and 0.99, respectively). Within the 49 isolates obtained from blood cultures of 33 patients, 20 distinct strains were identified by PFGE and 25 by RAPD. Of the 25 strains identified by RAPD, nine clusters of CoNS contained isolates from multiple patients, suggesting limited nosocomial spread. However, there was no significant association between time of inpatient stay and infection due to any particular strain. Conclusion: The RAPD technique presented allows CoNS strains to be genotyped with high discrimination within 4 h, facilitating real-time epidemiological investigations. In this study, no single strain of CoNS was associated with a significant number of CVC-related bloodstream infections. © 2005 Published by Elsevier Ltd on behalf of the British Infection Society.