257 resultados para nonlinear optical applications

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that by inserting nonlinear optical loop mirrors into an optical fibre transmission line, that 1.5 ps solitons may be transmitted over at least 750 km, with amplifiers spaced at 15 km intervals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a fiber laser system as a specific illustrative example, we introduce the concept of intermediate asymptotic states in finite nonlinear optical systems. We show that intermediate asymptotics of nonlinear equations (e.g., coherent structures with a finite lifetime or distance) can be used in applications similar to those of truly stable asymptotic solutions, such as, e.g., solitons and dissipative nonlinear waves. Applying this general idea to a particular, albeit practically important, physical system, we demonstrate a novel type of nonlinear pulse-shaping regime in a mode-locked fiber laser leading to the generation of linearly chirped pulses with a triangular distribution of the intensity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel all-optical regeneration technique using loop-mirror intensity-filtering and nonlinear broadening in normal-dispersion fibre is described. The device offers 2R-regeneration function and phase margin improvement. The technique is applied to 40Gbit/s return-to-zero optical data streams.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonlinear optical loop mirror (NOLM) requires breaking the loop symmetry to enable the counter propagating pulses to acquire a differential π phase shift. This is achieved with either an asymmetric fused fibre coupler at the input or by the inclusion of an asymmetrically located gain or loss element within the loop. By introducing a frequency selective loss element, nonlinear switching may be confined to a narrow band of wavelengths or multiple wavelengths. This configuration may have applications in time-wavelength demultiplexing. We demonstrate this technique of bandpass switching in the soliton regime using a fibre-Bragg grating reflector as the wavelength dependent loss.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel all-optical regeneration technique using loop-mirror intensity-filtering and nonlinear broadening in normal-dispersion fibre is described. The device offers 2R-regeneration function and phase margin improvement. The technique is applied to 40Gbit/s return-to-zero optical data streams.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that by inserting nonlinear optical loop mirrors into an optical fibre transmission line, that 1.5 ps solitons may be transmitted over at least 750 km, with amplifiers spaced at 15 km intervals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a fiber laser system as a specific illustrative example, we introduce the concept of intermediate asymptotic states in finite nonlinear optical systems. We show that intermediate asymptotics of nonlinear equations (e.g., coherent structures with a finite lifetime or distance) can be used in applications similar to those of truly stable asymptotic solutions, such as, e.g., solitons and dissipative nonlinear waves. Applying this general idea to a particular, albeit practically important, physical system, we demonstrate a novel type of nonlinear pulse-shaping regime in a mode-locked fiber laser leading to the generation of linearly chirped pulses with a triangular distribution of the intensity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present exact analytical results for the statistics of nonlinear coupled oscillators under the influence of additive white noise. We suggest a perturbative approach for analysing the statistics of such systems under the action of a deterministic perturbation, based on the exact expressions for probability density functions for noise-driven oscillators. Using our perturbation technique we show that our results can be applied to studying the optical signal propagation in noisy fibres at (nearly) zero dispersion as well as to weakly nonlinear lattice models with additive noise. The approach proposed can account for a wide spectrum of physically meaningful perturbations and is applicable to the case of large noise strength. © 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The behavior of a semiconductor optical amplifier (SOA)-based nonlinear loop mirror with feedback has been investigated as a potential device for all-optical signal processing. In the feedback device, input signal pulses (ones) are injected into the loop, and amplified reflected pulses are fed back into the loop as switching pulses. The feedback device has two stable modes of operation - block mode, where alternating blocks of ones and zeros are observed, and spontaneous clock division mode, where halving of the input repetition rate is achieved. Improved models of the feedback device have been developed to study its performance in different operating conditions. The feedback device could be optimized to give a choice of either of the two stable modes by shifting the arrival time of the switching pulses at the SOA. Theoretically, it was found possible to operate the device at only tens of fJ switching pulse energies if the SOA is biased to produce very high gain in the presence of internal loss. The clock division regime arises from the combination of incomplete SOA gain recovery and memory of the startup sequence that is provided by the feedback. Clock division requires a sufficiently high differential phase shift per unit differential gain, which is related to the SOA linewidth enhancement factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the essential features of the dissipative parametric instability, in the universal complex Ginzburg- Landau equation. Dissipative parametric instability is excited through a parametric modulation of frequency dependent losses in a zig-zag fashion in the spectral domain. Such damping is introduced respectively for spectral components in the +ΔF and in the -ΔF region in alternating fashion, where F can represent wavenumber or temporal frequency depending on the applications. Such a spectral modulation can destabilize the homogeneous stationary solution of the system leading to growth of spectral sidebands and to the consequent pattern formation: both stable and unstable patterns in one- and in two-dimensional systems can be excited. The dissipative parametric instability provides an useful and interesting tool for the control of pattern formation in nonlinear optical systems with potentially interesting applications in technological applications, like the design of mode- locked lasers emitting pulse trains with tunable repetition rate; but it could also find realizations in nanophotonics circuits or in dissipative polaritonic Bose-Einstein condensates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Observation of autosoliton propagation in a dispersion-managed optical transmission system controlled by in-line nonlinear fiber loop switches is reported for what is believed to be the first time. The system is based on a strong dispersion map with large amplifier spacing. Operation at transmission rates of 10 and 40 Gbits/s is demonstrated. ©2004 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate simultaneous demultiplexing, data regeneration and clock recovery at 10Gbits/s, using a single semiconductor optical amplifier–based nonlinear-optical loop mirror in a phase-locked loop configuration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate bandpass nonlinear switching, using a novel device configuration based on a nonlinear-optical loop mirror and an in-fiber Bragg grating. Self-switching is demonstrated in the soliton regime by use of an asymmetrically arranged in-fiber Bragg grating as a wavelength-selective element. In addition, we adapt the configuration to perform efficient two-wavelength switching.