2 resultados para niobia
em Aston University Research Archive
Resumo:
The catalytic dehydration of glycerol to acrolein is investigated over silica-supported niobia catalysts in a continuous fixed-bed gas-phase reactor. Various supported niobia catalysts are prepared and characterized using surface analysis and spectroscopic methods (XRD, UV-Vis, XPS, N2 adsorption), as well as with ammonia adsorption microcalorimetry. Good results are obtained with initial glycerol conversions of over 70% and with 50-70% selectivity to acrolein. We investigate the influence of changing the catalyst acid strength by varying the niobia content and catalyst calcination temperature. Glycerol conversion and acrolein selectivity depend on the surface acid strength. Catalyst deactivation by coking is also observed, but simple oxidative treatment in air restores the activity of the catalysts completely. © The Author(s) 2010.
Resumo:
A family of bulk and SBA-15 supported peroxo niobic acid sols were prepared by peptisation of niobic acid precipitates with H2O2 as heterogeneous catalysts for aqueous phase glucose and fructose conversion to 5-hydroxymethylfurfural (5-HMF). Niobic acid nanoparticles possess a high density of Brønsted and Lewis acid sites, conferring good activity towards glucose and fructose conversion, albeit with modest 5-HMF yields under mild reaction conditions (100 °C). Thermally-induced niobia crystallisation suppresses solid acidity and activity. Nanoparticulate niobic acid dispersed over SBA-15 exhibits pure Brønsted acidity and an enhanced Turnover Frequency for fructose dehydration.