2 resultados para new mutation

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Frontotemporal lobar degeneration (FTLD) with transactive response (TAR) DNA-binding protein of 43kDa (TDP-43) proteinopathy (FTLD-TDP) is a neurodegenerative disease characterized by variable neocortical and allocortical atrophy principally affecting the frontal and temporal lobes. Histologically, there is neuronal loss, microvacuolation in the superficial cortical laminae, and a reactive astrocytosis. A variety of TDP-43 immunoreactive changes are present in FTLD-TDP including neuronal cytoplasmic inclusions (NCI), neuronal intranuclear inclusions (NII), dystrophic neurites (DN) and, oligodendroglial inclusions (GI). Many cases of familial FTLD-TDP are caused by DNA mutations of the progranulin (GRN) gene. Hence, the density, spatial patterns, and laminar distribution of the pathological changes were studied in nine cases of FLTD-TDP with GRN mutation. The densities of NCI and DN were greater in cases caused by GRN mutation compared with sporadic cases. In cortical regions, the commonest spatial pattern exhibited by the TDP-43 immunoreactive lesions was the presence of clusters of inclusions regularly distributed parallel to the pia mater. In approximately 50% of cortical gyri, the NCI exhibited a peak of density in the upper cortical laminae while the GI were commonly distributed across all laminae. The distribution of the NII and DN was variable, the most common pattern being a peak of NII density in the lower cortical laminae and DN in the upper cortical laminae. These results suggest in FTLD-TDP caused by GRN mutation: 1) there are greater densities of NCI and DN than in sporadic cases of the disease, 2) there is degeneration of the cortico-cortical and cortico-hippocampal pathways, and 3) cortical degeneration occurs across the cortical laminae, the various TDP-43 immunoreactive inclusions often being distributed in different cortical laminae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For evolving populations of replicators, there is much evidence that the effect of mutations on fitness depends on the degree of adaptation to the selective pressures at play. In optimized populations, most mutations have deleterious effects, such that low mutation rates are favoured. In contrast to this, in populations thriving in changing environments a larger fraction of mutations have beneficial effects, providing the diversity necessary to adapt to new conditions. What is more, non-adapted populations occasionally benefit from an increase in the mutation rate. Therefore, there is no optimal universal value of the mutation rate and species attempt to adjust it to their momentary adaptive needs. In this work we have used stationary populations of RNA molecules evolving in silico to investigate the relationship between the degree of adaptation of an optimized population and the value of the mutation rate promoting maximal adaptation in a short time to a new selective pressure. Our results show that this value can significantly differ from the optimal value at mutation-selection equilibrium, being strongly influenced by the structure of the population when the adaptive process begins. In the short-term, highly optimized populations containing little variability respond better to environmental changes upon an increase of the mutation rate, whereas populations with a lower degree of optimization but higher variability benefit from reducing the mutation rate to adapt rapidly. These findings show a good agreement with the behaviour exhibited by actual organisms that replicate their genomes under broadly different mutation rates. © 2010 Stich et al.