3 resultados para neutron-proton differential flow
em Aston University Research Archive
Resumo:
The avidity of conidia and 48-h-old germlings of Coniothyrium minitans for FITC-conjugated lectins was characterised by flow cytometry and digital microscopy. Six isolates of C. minitans representing three morphological types were compared. Binding of Con A, SBA and WGA by conidial populations varied markedly in extent and pattern between isolates, however, with increasing culture age, conidia from all isolates demonstrated a significant reduction in lectin avidity. Germling isolates bound significantly different amounts of lectins and lectin binding differed significantly with locality. Spore walls of all germlings from all isolates bound more ConA compared with hyphal apices and mature hyphal walls. In contrast, hyphal apices of the majority of germling isolates, readily bound SBA and mature hyphal walls of germling isolates bound more WGA than other regions of the germlings. Such differential lectin binding by conidia and germlings may influence their specific surface interactions and adherence characteristics.
Resumo:
The gamma-rays produced by the inelastic scattering of 14 MeV neutrons. in fusion reactor materials have been studied using a gamma-ray spectrometer employing a sodium iodide scintillation detector. The source neutrons are produced by the T(d,n)4He reaction using the SAMES accelerator at the University of Aston in Birmingham. In order to eliminate the large gamma-ray background and neutron signal due to the sensitivity of the sodium iodide detector to neutrons, the gamma-ray detector is heavily shielded and is used together with a particle time of flight discrimination system based on the associated particle time of flight method. The instant of production of a source neutron is determined by detecting the associated alpha-particle enabling discrimination between the neutrons and gamma-rays by their different time of flight times. The electronic system used for measuring the time of flight of the neutrons and gamrna-rays over the fixed flight path is described. The materials studied in this work were Lithium and Lead because of their importance as fuel breeding and shielding materials in conceptual fusion reactor designs. Several sample thicknesses were studied to determine the multiple scattering effects. The observed gamma-ray spectra from each sample at several scattering angles in the angular range Oº - 90° enabled absolute differential gamma-ray production cross-sections and angular distributions of the resolved gamma-rays from Lithium to be measured and compared with published data. For the Lead sample, the absolute differential gamma-ray production cross-sections for discrete 1 MeV ranges and the angular distributions were measured. The measured angular distributions of the present work and those on Iron from previous work are compared to the predictions of the Monte Carlo programme M.O.R.S.E. Good agreement was obtained between the experimental results and the theoretical predictions. In addition an empirical relation has been constructed which describes the multiple scattering effects by a single parameter and is capable of predicting the gamma-ray production cross-sections for the materials to an accuracy of ± 25%.
Resumo:
In this article, an iterative algorithm based on the Landweber-Fridman method in combination with the boundary element method is developed for solving a Cauchy problem in linear hydrostatics Stokes flow of a slow viscous fluid. This is an iteration scheme where mixed well-posed problems for the stationary generalized Stokes system and its adjoint are solved in an alternating way. A convergence proof of this procedure is included and an efficient stopping criterion is employed. The numerical results confirm that the iterative method produces a convergent and stable numerical solution. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007