6 resultados para neutral detergent soluble carbohydrates
em Aston University Research Archive
Resumo:
In symbiotic lichens which have Trebouxia as the algal partner, photosynthesis by the algae results in the production of the soluble carbohydrate ribitol which is then transported to the fungus where it is converted to arabitol and mannitol. Within the fungus, arabitol may act as a short-term carbohydrate reserve while mannitol may have a more protective function and be important in stress resistance. The concentrations of ribitol, arabitol, and mannitol were measured, using gas chromatography, in the central areolae and marginal hypothallus of the crustose lichen Rhizocarpon geographicum (L.) DC. growing on slate rocks in north Wales, UK. The concentrations of all three soluble carbohydrates were greater in the central areolae than in the marginal prothallus. In addition, the ratio of mannitol in the prothallus to that in the areolae was least in July. The concentration of an individual carbohydrate in the prothallus was correlated primarily with the concentrations of the other carbohydrates in the prothallus and not to their concentrations in the areolae. Low concentration of ribitol, arabitol, and mannitol in the marginal prothallus compared with the central areolae suggests either a lower demand for carbohydrate by the prothallus or limited transport from areolae to prothallus and may explain the low growth rates of this species. In addition, soluble carbohydrates appear to be partitioned differently through the year with an increase in mannitol compared with arabitol in more stressful periods.
Resumo:
Three species of filamentous fungi, Botrytis cinerea, Sporotrichum thermophile and Trichoderma viride, have been selected to assess the potential of utilizing filamentous fungi to degrade plant cell biomass produced by mass cell culture techniques. All three fungal species grew comparatively well on plant cell biomass with no requirement for supplementary nutrients. Of the three species assessed B. cinerea demonstrated the most growth. This species also produced the greatest yield of D-glucose. However, when culture conditions were modified, yields of D-glucose were markedly reduced indicating that the combination of species and culture conditions must be thoroughly investigated to ensure maximum product yield. The growth of filamentous fungi on plant cells also markedly affected the nature of the resulting fungal-plant cell residue, increasing the levels of soluble carbohydrates and essential amino acids with the largest increase in these materials being promoted by B. cinerea.
Resumo:
The levels of the soluble carbohydrates ribitol, arabitol and mannitol were measured in individual lobes of the lichen Parmelia conspersa (Ehrh. ex Ach.) Ach. Lobes were collected from a north and a south facing slate rock surface in South Gwynedd, Wales, U.K. on 4 days during 1990-1991. On each day sampled, the most significant variation in soluble carbohydrate levels was between the individual lobes of a thallus. In addition, carbohydrate levels were significantly greater on the south facing rock surface on 2 of the 4 days sampled. Factorial analyses of variance suggested that the levels of individual carbohydrates varied significantly between days but not between north and south facing rock surfaces. Mannitol levels varied less between days than arabitol levels. Levels of ribitol, arabitol and mannitol were positively correlated in individual lobes. A stepwise multiple regression suggested that on the north facing rock surface, arabitol and mannitol levels could be explained by variations in the level of ribitol. By contrast, on the south facing rock surface, the levels of fungal carbohydrates were less dependent on the level of ribitol and there was evidence of a relationship between arabitol and mannitol. Variations in carbohydrate production, allocation and metabolism could help to explain lobe growth variation in foliose lichens and the radial growth of lobes over a longer period of time. Greater carbohydrate production rather than differences in allocation and metabolism may explain the increased growth and frequency of P. conspersa on south facing rock surfaces in South Gwynedd. © 1994.
Resumo:
Fifteen Miscanthus genotypes grown in five locations across Europe were analysed to investigate the influence of genetic and environmental factors on cell wall composition. Chemometric techniques combining near infrared reflectance spectroscopy and conventional chemical analyses were used to construct calibration models for determination of acid detergent lignin, acid detergent fibre, and neutral detergent fibre from sample spectra. The developed equations were shown to predict cell wall components with a good degree of accuracy and significant genetic and environmental variation was identified. The influence of nitrogen and potassium fertiliser on the dry matter yield and cell wall composition of M. x giganteus was investigated. A detrimental affect on feedstock quality was observed to result from application of these inputs which resulted in an overall reduction in concentrations of cell wall components and increased accumulation of ash within the biomass. Pyrolysis-gas chromatography-mass spectrometry and thermo-gravimetric analysis indicates that genotypes other than the commercially cultivated M. x giganteus have potential for use in energy conversion processes and in the bio-refining. The yields and quality parameters of the pyrolysis liquids produced from Miscanthus compared favourably with that produced from SRC willow and produced a more stable pyrolysis liquid with a higher lower heating value. Overall, genotype had a more significant effect on cell wall composition than environment. This indicates good potential for dissection of this trait by QTL analysis and also for plant breeding to produce new genotypes with improved feedstock characteristics for energy conversion.
Resumo:
Fifteen Miscanthus genotypes grown in five locations across Europe were analysed to investigate the influence of genetic and environmental factors on cell wall composition. Chemometric techniques combining near infrared reflectance spectroscopy (NIRS) and conventional chemical analyses were used to construct calibration models for determination of acid detergent lignin (ADL), acid detergent fibre (ADF), and neutral detergent fibre (NDF) from sample spectra. Results generated were subsequently converted to lignin, cellulose and hemicellulose content and used to assess the genetic and environmental variation in cell wall composition of Miscanthus and to identify genotypes which display quality traits suitable for exploitation in a range of energy conversion systems. The NIRS calibration models developed were found to predict concentrations with a good degree of accuracy based on the coefficient of determination (R2), standard error of calibration (SEC), and standard error of cross-validation (SECV) values. Across all sites mean lignin, cellulose and hemicellulose values in the winter harvest ranged from 76–115 g kg-1, 412–529 g kg-1, and 235–338 g kg-1 respectively. Overall, of the 15 genotypes Miscanthus x giganteus and Miscanthus sacchariflorus contained higher lignin and cellulose concentrations in the winter harvest. The degree of observed genotypic variation in cell wall composition indicates good potential for plant breeding and matching feedstocks to be optimised to different energy conversion processes.
Resumo:
This thesis is concerned with the use of ionic and neutral hydrogels in dermal and ocular applications with particular reference to controlled release applications. The work consists of three interconnected themes.The first area of study is the use of skin adhesive bioelectrode hydrogels as ground plate electrodes for ophthalmic iontophoresis applications. The work provides a basis of understanding the relative contributions made by ionic monomers (such as sodium s-(acrylamide)-2-methyl propane sulphonate and acrylic acid-bis-(3-sulfopropyl-ester, potassium salt) and neutral monomers (such as acryloymorpholine, N,N-dimethylacrylamide and N-vinyl pyrrolidone) to adhesion, rheology and impedance of bioelectrode gels. The general advantage of neutral monomers, which have been used to successfully replace ionic monomers, is that they enable more effective control of independent anion and cation species (for example potassium chloride and sodium chloride) unlike ionic monomers where polymerisation produces an immobile polyanion thus limiting cation mobility. Secondly, release from a completely neutral hydrogel under the influence of mechanical shaking was studied for the case of crosslinked polyvinyl alcohol (PVA) containing low concentration of linear soluble PVA in a contact lens application. The soluble PVA was observed to be eluting by reptation from the lens matrix due to the mechanical action of the eyelid. This process was studied in an in vitro model, which in this research was used as a basis for developing a lens made with enhanced release polymer. The third area of work is related to the factors that control drug release (in particular non-steroidal anti-inflammatory drugs) from a hydrogel matrix. This links both electrotherapy applications, such as transcutaneous electrical nerve stimulation, in which the passive diffusion from the gel could be used in conjunction with enhanced transmission across the dermal surface with passive diffusion from a contact lens matrix and the development of therapeutic contact lenses.