13 resultados para neurotoxic
em Aston University Research Archive
Resumo:
Current knowledge of the long-term, low dose effects of carbamate (CB) anti-cholinesterases on skeletal muscle or on the metabolism and regulation of the molecular forms of acetylcholinesterase (AChE) is limited. This is largely due to the reversible nature of these inhibitors and the subtle effects they induce which has generally made their study difficult and preliminary investigations were conducted to determine suitable study methods. A sequential extraction technique was used to rapidly analyse AChE molecular form activity at the mouse neuromuscular junction and also in peripheral parts of muscle fibres. AChE in the synaptic cleft involved in the termination of cholinergic transmission was successfully assessed by the assay method and by an alternative method using a correlation equation which represented the relationship between synaptic AChE and the prolongation of extra-cellular miniature endplate potentials. It was found that inhibition after in vivo Carbamate (CB) dosing could not be maintained during tissue analysis because CB-inhibited enzyme complexes decarbamoylated vary rapidly and could not be prevented even when maintained on ice. The methods employed did not therefore give a measure of inhibition but presented a profile of metabolic responses to continual, low dose CB treatment. Repetitive and continual infusion with low doses of the CBs: pyridostigmine and physostigmine induced a variety of effects on mouse skeletal muscle. Both compounds induced a mild myopathy in the mouse diaphragm during continual infusion which was characterised by endplate deformation without necrosis; such deformation persisted on termination of treatment but had recovered slightly 14 days later. Endplate and non-endplate AChE molecular forms displayed selective responses to CB treatment. During treatment endplate AChE was reduced whereas non-endplate AChE was largely unaffected, and after treatment, endplate AChE recovered, whereas non-endplate AChE was up-regulated. The mechanisms by which these responses become manifest are unclear but may be due to CB-induced effects on nerve-mediated muscle activity, neurotrophic factors or morphological and physiological changes which arise at the neuromuscular junction. It was concluded that, as well as inhibiting AChE, CBs also influence the metabolism and regulation of the enzyme and induce persistent endplate deformation; possible detrimental effects of long-term, low-dose determination requires further investigation.
Resumo:
Objectives Ecstasy is a recreational drug whose active ingredient, 3,4-methylenedioxymethamphetamine (MDMA), acts predominantly on the serotonergic system. Although MDMA is known to be neurotoxic in animals, the long-term effects of recreational Ecstasy use in humans remain controversial but one commonly reported consequence is mild cognitive impairment particularly affecting verbal episodic memory. Although event-related potentials (ERPs) have made significant contributions to our understanding of human memory processes, until now they have not been applied to study the long-term effects of Ecstasy. The aim of this study was to examine the effects of past Ecstasy use on recognition memory for both verbal and non-verbal stimuli using ERPs. Methods We compared the ERPs of 15 Ecstasy/polydrug users with those of 14 cannabis users and 13 non-illicit drug users as controls. Results Despite equivalent memory performance, Ecstasy/polydrug users showed an attenuated late positivity over left parietal scalp sites, a component associated with the specific memory process of recollection. Conlusions This effect was only found in the word recognition task which is consistent with evidence that left hemisphere cognitive functions are disproportionately affected by Ecstasy, probably because the serotonergic system is laterally asymmetrical. Experimentally, decreasing central serotonergic activity through acute tryptophan depletion also selectively impairs recollection, and this too suggests the importance of the serotonergic system. Overall, our results suggest that Ecstasy users, who also use a wide range of other drugs, show a durable abnormality in a specific ERP component thought to be associated with recollection.
Resumo:
We have studied the hypothesis that 6,7-dihydroxy-1-methyl-1,2,3,4-tetrahydroisoquinoline (salsolinol) is neurotoxic. Salsolinol induced a significant time and dose related inhibition of 3[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide; thiazoyl blue (MTT) reduction, and increased lactate dehydrogenase release (LDH) release from human SH-SY5Y neuroblastoma cells, at concentrations within the range of 1-methyl-4-phenylpyridinium (MPP+) cytotoxicity, in vitro. Cytotoxicity was not inhibited by the addition of antioxidants, monoamine oxidase inhibitors or imipramine. In confluent monolayers, salsolinol stimulated catecholamine uptake with EC50 values of 17 muM and 11 muM, for noradrenaline and dopamine, respectively. Conversely, at concentrations above 100 muM, salsolinol inhibited the uptake of noradrenaline and dopamine, with IC50 values of 411 muM and 379 muM, respectively. The inhibition of catecholamine uptake corresponded to the increase displacement of [3H]nisoxetine from the uptake 1 site by salsolinol, as the Ki (353 muM) for displacement was similar to the IC50 (411 and 379 muM) for uptake. Salsolinol stimulated catecholamine uptake does not involve the uptake recognition site, or elevation of cAMP, cGMP, or inhibition of protein kinase C. Salsolinol also inhibited both carbachol (1 mM) and K+ (100 mM, Na+ adjusted) evoked released of noradrenaline from SH-SY5Y cells, with IC50 values of 500 muM and 120 muM, respectively. In conclusion, salsolinol appears to be cytotoxic to SH-SY5Y cells, via a mechanism that does not require uptake 1, bioactivation by monoamine oxidase, or membrane based free radical damage. The effects of salsolinol on catecholamine uptake, and the mechanism of toxicity require further investigation.
Resumo:
To investigate the neurotoxic effects of aluminium (Al) Al was administered: 1) in the diet of the rat (30 mg Al/kg body weight for 6 weeks); 2) as a suspension of aluminium acetate in drinking water of the rat for 3 months and 3) in a long-term study in the mouse in which aluminosilicates were incorporated into a pelleted diet (1035 mg/kg of food over 23 months). In the latter treatment, increased Al was combined with a reduction in calcium and magnesium; a treatment designed to increase absorption of Al into the body. Administration of Al in the drinking water significantly reduced total brain biopterins and BH4 synthesis. However, no significant affect of Al in the diet on total biopterins or BH4 synthesis was found either in the rat or in the long-term study in the mouse. In addition, in the mouse no significant effects of the Al diet on levels of noradrenaline, serotonin, dopamine, 5-HIAA or CAT could be demonstrated. Hence, the occurrence of brain alterations may depend on the Al species present and the method of administration. Al salts in drinking water may increase brain tissue levels compared with the administration of a more insoluble species. Since alterations in biopterin metabolism are also a feature of Alzheimer's disease (AD) these results support the hypothesis that Al in the water supply may be a factor in AD.
Resumo:
To investigate the neurotoxic effects of aluminium (Al) three studies were carried out in which Al was administered: 1) in the diet, 2) as a suspension of aluminium acetate in drinking water and 3) a long-term study in which aluminosilicates were incorporated into a pelleted diet. Admistration of Al in the drinking water significantly reduced total brain biopterin. However, no significant affect of Al in the diet on total bipterins or BH4 synthesis was found.
Resumo:
The timeline imposed by recent worldwide chemical legislation is not amenable to conventional in vivo toxicity testing, requiring the development of rapid, economical in vitro screening strategies which have acceptable predictive capacities. When acquiring regulatory neurotoxicity data, distinction on whether a toxic agent affects neurons and/or astrocytes is essential. This study evaluated neurofilament (NF) and glial fibrillary acidic protein (GFAP) directed single-cell (S-C) ELISA and flow cytometry as methods for distinguishing cell-specific cytoskeletal responses, using the established human NT2 neuronal/astrocytic (NT2.N/A) co-culture model and a range of neurotoxic (acrylamide, atropine, caffeine, chloroquine, nicotine) and non-neurotoxic (chloramphenicol, rifampicin, verapamil) test chemicals. NF and GFAP directed flow cytometry was able to identify several of the test chemicals as being specifically neurotoxic (chloroquine, nicotine) or astrocytoxic (atropine, chloramphenicol) via quantification of cell death in the NT2.N/A model at cytotoxic concentrations using the resazurin cytotoxicity assay. Those neurotoxicants with low associated cytotoxicity are the most significant in terms of potential hazard to the human nervous system. The NF and GFAP directed S-C ELISA data predominantly demonstrated the known neurotoxicants only to affect the neuronal and/or astrocytic cytoskeleton in the NT2.N/A cell model at concentrations below those affecting cell viability. This report concluded that NF and GFAP directed S-C ELISA and flow cytometric methods may prove to be valuable additions to an in vitro screening strategy for differentiating cytotoxicity from specific neuronal and/or astrocytic toxicity. Further work using the NT2.N/A model and a broader array of toxicants is appropriate in order to confirm the applicability of these methods.
Resumo:
Aluminium (Al) is known to be neurotoxic and has been associated with the aetiology of Alzheimer's Disease. To date, only desferrioxamine (DFO), a trihydroxamic acid siderophore has been used in the clinical environment for the removal of Al from the body. However, this drug is expensive, orally inactive and is associated with many side effects. These studies employed a theoretical approach, with the use of quantum mechanics (QM) via semi-empirical molecular orbital (MO) calculations, and a practical approach using U87-MG glioblastoma cells as a model for evaluating the influence of potential chelators on the passage of aluminium into cells. Preliminary studies involving the Cambridge Structural Database (CSD) identified that Al prefers binding to bidentate ligands in a 3:1 manner, whereby oxygen was the exclusive donating atom. Statistically significant differences in M-O bond lengths when compared to other trivalent metal ions such as Fe3+ were established and used as an acceptance criterion for subsequent MO calculations. Of the semi-empirical methods parameterised for Al, the PM3 Hamiltonian was found to give the most reliable final optimised geometries of simple 3:1 Al complexes. Consequently the PM3 Hamiltonian was used for evaluating the Hf of 3:1 complexes with more complicated ligands. No correlation exists between published stability constants and individual parameters calculated via PM3 optimisations, although investigation of the dicarboxylates reveals a correlation of 0.961 showing promise for affinity prediction of closely related ligands. A simple and inexpensive morin spectrofluorescence assay has been developed and optimised producing results comparable to atomic absorption spectroscopy methods for the quantitative analysis of Al. This assay was used in subsequent in vitro models, initially on E. coli, which indicated that Al inhibits the antimicrobial action of ciprofloxacin, a potent quinolone antibiotic. Ensuing studies using the second model, U87-MG cells, investigated the influence of chelators on the transmembrane transport of Al, identifying 1,2-diethylhydroxypyridin-4-one as a ligand showing greatest potential for chelating Al in the clinical situation. In conclusion, these studies have explored semi-empirical MO Hamiltonians and an in-vitro U87-MG cell line, both as possible methods for predicting effective chelators of Al.
Resumo:
The human NT2.D1 cell line was differentiated to form both a 1:2 co-culture of post-mitotic NT2 neuronal and NT2 astrocytic (NT2.N/A) cells and a pure NT2.N culture. The respective sensitivities to several test chemicals of the NT2.N/A, the NT2.N, and the NT2.D1 cells were evaluated and compared with the CCF-STTG1 astrocytoma cell line, using a combination of basal cytotoxicity and biochemical endpoints. Using the MTT assay, the basal cytotoxicity data estimated the comparative toxicities of the test chemicals (chronic neurotoxin 2,5-hexanedione, cytotoxins 2,3- and 3,4-hexanedione and acute neurotoxins tributyltin- and trimethyltin- chloride) and also provided the non-cytotoxic concentration-range for each compound. Biochemical endpoints examined over the non-cytotoxic range included assays for ATP levels, oxidative status (H2O2 and GSH levels) and caspase-3 levels as an indicator of apoptosis. although the endpoints did not demonstrate the known neurotoxicants to be consistently more toxic to the cell systems with the greatest number of neuronal properties, the NT2 astrocytes appeared to contribute positively to NT2 neuronal health following exposure to all the test chemicals. The NT2.N/A co-culture generally maintained superior ATP and GSH levels and reduced H2O2 levels in comparison with the NT2.N mono-culture. In addition, the pure NT2.N culture showed a significantly lower level of caspase-3 activation compared with the co-culture, suggesting NT2 astrocytes may be important in modulating the mode of cell death following toxic insult. Overall, these studies provide evidence that an in vitro integrated population of post-mitotic human neurons and astrocytes may offer significant relevance to the human in vivo heterogeneous nervous system, when initially screening compounds for acute neurotoxic potential.
Resumo:
Endogenous glucocorticoids and serotonin have been implicated in the pathophysiology of depression, anxiety and schizophrenia. This thesis investigates the potential of downregulating expression of central Type II glucocorticoid receptors (GR) both in vitro and in vivo, with empirically-designed antisense oligodeoxynucleotides (ODN), to characterise GR modulation of 5-HT2A receptor expression using quantitative RT-PCR, Western blot analysis and radioligand binding. The functional consequence of GR downregulation is also determined by measuring 1-(2,5-dimethoxy 4-iodophenyl)-2-amino propane hydrochloride (DOI) mediated 5-HT2A receptor specific headshakes. Using a library of random antisense ODN probes, RNAse H accessibility mapping of T7-primed, in vitro transcribed GR mRNA revealed several potential cleavage sites and identified an optimally effect GR antisense ODN sequence of 21-mer length (GRAS5). In vitro efficacy studies using rat C6 glioma cells showed a 56% downregulation in GR mRNA levels and 80% downregulation in GR protein levels. In the same cells a 29% upregulation in 5-HT2A mRNA levels and 32% upregulation in 5-HT2A protein levels was revealed. This confirmed the optimal nature of the GRAS5 sequence to produce marked inhibition of GR gene expression, and also revealed GR modulation of the 50-HT2A receptor subtype in C6 glioma cells to be a tonic repression of receptor expression. The distribution of a fluorescently-labelled GRAS5 ODN was detected in diverse areas of the rat brain after single ICV administration, although this fluorescence signal was not sustained over a period of 5 days. However, fluorescently-labelled GRAS5 ODN, when formulated in polymer microspheres, showed diverse distribution in the brain which was maintained for 5 days following a single ICV administration. This produced no apparent neurotoxic effects on rat behaviour and hypothalamic-pituitary-adrenal (HPA) axis homeostasis. Furthermore, a single polymer microsphere injection ICV proved to be an effective means of delivering antisense ODNs and this was adopted for the in vivo efficacy studies. In vivo characterisation of GRAS5 revealed marked downregulation of GR mRNA in rat brain regions such as the frontal cortex (26%), hippocampus (35%), and hypothalamus (39%). Downregulation of GR protein was also revealed in frontal cortex (67%), hippocampus (76%), and hypothalamus (80%). In the same animals upregulation of 5-HT2A mRNA levels was shown in frontal cortex (13%), hippocampus (7%), and hypothalamus (5%) while upregulation in 5-HT2A protein levels was shown in frontal cortex (21 %). This upregulation in 5-HT2A receptor density as a result of antisense-mediated inhibition of GR was further confirmed by a 55% increase in DOl-mediated 5-HT2A receptor specific headshakes. These results demonstrate that GR is involved in tonic inhibitory regulation of 5-HT2A receptor expression and function in vivo, thus providing the potential to control 5-HT2A-linked disorders through corticosteroid manipulation. These experiments have therefore established an antisense approach which can be used to investigate pharmacological characteristics of receptors.
Resumo:
By employing G75 gel-filtration chromotography, it has been demonstrated that human plasma gallium speciation (and by implication, Al speciation) is bimodal. Normally, gallium was predominantly bound to a high molecular weight fraction which was presumably transferrin. Literature reviews and experimental work throughout this thesis provided evidence to support this idea. An aluminium-transferrin species was assumed to be relatively non-toxic and a protective function for this complex has been suggested. A second, low molecular weight species of gallium was observed and its identity has been suggested to be citrate. The results of this thesis support the concept citrate was a gallium binding ligand present in the plasma, but there was another species (tentatively identified as phosphate) which bound gallium to a much greater degree than did citrate in the majority of samples studied. The consequence of a low molecular weight species of aluminium is the possibility that this leads to a more rapid, uncontrolled deposition of the metal in the brain compared to a transferrin mediated mechanism. Plasma speciation studies in Alzheimer's disease, Parkinson's disease, Down's syndrome, and neonates has revealed an altered ratio of the two gallium species found in control subjects. In all groups there was an increase in the potentially more neurotoxic low molecular weight species. These observations have led to a suggested mechanism of accumulation of metals in the brain, which is known to occur in the first three groups. Possible pathogenic mechanisms are described. The results can also offer an explanation to the reported increased sensitivity to the toxic effects of aluminium in the neonate. Speciation studies on normal plasma has shown the balance between high and low molecular weight species of gallium to be influenced by many physiological factors. There appears to be a fine equilibrium between both species which can be altered without any great difficulty. Therefore, in the diseased groups studied, it is possible that there are subtle biochemical changes within the circulatory system to affect the equilibrium which results in an increased low molecular weight species of aluminium. Furthermore, it has been demonstrated that there is a group of normal controls with no clinical signs of Alzheimer's or Parkinson's disease which have reduced transferrin binding. This indicates there is a population of healthy people who are at risk to the development of either disease.
Resumo:
2,5-hexanedione (2,5HD) is the neurotoxic metabolite of the aliphatic hydrocarbon n-Hexane. The isomers, 2,3-hexanedione (2,3HD) and 3,4-hexanedione (3,4HD) are used as food additives. Although the neurotoxicity of 2,5HD is well established, there are no human data of the possible toxicity of the 2,3- and 3,4- isomers. MTT and flow cytometry were utilised to determine the cytotoxicity of hexanedione isomers in neuroblastoma cells. The neuroblastoma cell lines SK-N-SH and SH-SY5Y are sufficiently neuron-like to provide preliminary assessment of the neurotoxic potential of these isomers, in comparison with toxicity towards human non-neuronal cells. Initial studies showed that 2,5HD was the least toxic in all cell lines at all times (4, 24 and 48h). Although considerably lower than for 2,5HD, in general the IC50s for the α isomers were not significantly different from each other and, besides 4h exposure, the SH-SY5Y cells were significantly more sensitive to 2,3HD and 3,4HD than the SK-N-SH cells. All three isomers caused varying degrees of apoptosis in the neuroblastoma lines, with 3,4HD more potent than 2,3HD. Flow cytometry highlighted cell cycle arrest indicative of DNA damage with 2,3- and 3,4HD. The toxicity of the isomers towards 3 non-neuronal cell lines (MCF7, HepG2 and CaCo-2) was assessed by MTT assay. All 3 hexanedione isomers proved to be cytotoxic in all non-neuronal cell lines at all time points. These data suggest cytotoxicity of 2,3- and 3,4HD (mM range), but it is difficult to define this as specific neurotoxicity in the absence of specific neurotoxic endpoints. However, the neuroblastomas were significantly more susceptible to the cytotoxic effects of the α hexanedione isomers at exposures of 4 and 24 hours, compared to non-neuronal lines. Finally, a mechanism of toxicity is suggested for the α HD isomers whereby inhibition of the oxoglutarate carrier (OGC) releases apoptosis inducing factor (AIF), causing apoptosis-like cell death.
Resumo:
The potential cytotoxicity of two hexanedione food additives (2,3 and 3,4 isomers) was evaluated in comparison with the neurotoxic hexane metabolite 2,5-hexanedione in the human SK-N-SH neuroblastoma line using the MTT assay to indicate mitochondrial dehydrogenase activity and flow cytometry to monitor the cell cycle over 48 h. The IC50s of the 2,3-hexanedione (3.3 ± 0.1 mM) and 3,4-hexanedione (3.5 ± 0.1 mM), indicated that the sensitivity of the cells was approximately seven-fold greater to these toxins compared with the 2,5 derivative (IC50 of 22.4 ± 0.2 mM). Comparison between the respective IC50s of the 2,3-hexanedione and 3,4-hexanedione revealed no difference between the two isomers in terms of their effects on MTT turnover. With flow cytometry analysis, all three hexanediones showed increases in apoptosis within their respective concentration ranges of toxicity shown previously by MTT. In the presence of 2,5-hexanedione, between 8.5 and 17 mM concentrations, there was a significant increase in apoptotic nucleoids which was accompanied by a significant fall in the percentage of nucleoids in the G0/G1 phase (72.4 ± 0.3-45.3 ± 0.6%,), and a rise in the numbers of cells in the G2/M phase. This is likely to indicate growth arrest at cell cycle G2/M checkpoint in response to toxin damage. G2/M accumulation was also shown with 3,4 and 2,3 HD, which was maximal at much lower concentrations (approximately 4 and 3 mM, respectively). Arrest at G1 and G2/M phase is indicative of inhibition of the cell cycle at the stages of DNA replication and chromosome segregation, respectively. It was also apparent that flow cytometry, rather than the MTT assay, did distinguish between the effects of the α-diketones 2,3-hexanedione and 3,4-hexanedione on the cell cycle. At a concentration of 5.8 mM 3,4-hexanedione, the percentage of apoptotic nucleoids was 10.9 ± 0.8% whilst apoptosis induced by 3,4-hexanedione had already reached a maximal level of 60.4 ± 0.5%. In summary, flow cytometry indicated that the 3,4-hexanedione derivative was more toxic than its 2,3 isomer and that both food additives caused interruption in the neuroblastoma cell cycle and further investigation may be required to assess if these α-diketones present in diets pose any possible risks to human health. © 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Recent changes to the legislation on chemicals and cosmetics testing call for a change in the paradigm regarding the current 'whole animal' approach for identifying chemical hazards, including the assessment of potential neurotoxins. Accordingly, since 2004, we have worked on the development of the integrated co-culture of post-mitotic, human-derived neurons and astrocytes (NT2.N/A), for use as an in vitro functional central nervous system (CNS) model. We have used it successfully to investigate indicators of neurotoxicity. For this purpose, we used NT2.N/A cells to examine the effects of acute exposure to a range of test chemicals on the cellular release of brain-derived neurotrophic factor (BDNF). It was demonstrated that the release of this protective neurotrophin into the culture medium (above that of control levels) occurred consistently in response to sub-cytotoxic levels of known neurotoxic, but not non-neurotoxic, chemicals. These increases in BDNF release were quantifiable, statistically significant, and occurred at concentrations below those at which cell death was measureable, which potentially indicates specific neurotoxicity, as opposed to general cytotoxicity. The fact that the BDNF immunoassay is non-invasive, and that NT2.N/A cells retain their functionality for a period of months, may make this system useful for repeated-dose toxicity testing, which is of particular relevance to cosmetics testing without the use of laboratory animals. In addition, the production of NT2.N/A cells without the use of animal products, such as fetal bovine serum, is being explored, to produce a fully-humanised cellular model.