29 resultados para neurodegeneration

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The laminar distribution of senile plaques (SP) and neurofibrillary tangles (NFT) was studied in areas B17 and B18 of the visual cortex in 18 cases of Alzheimer’s disease which varied in disease onset and duration. The objective was to test the hypothesis that SP and NFT could spread via either the feedforward or feedback short cortico-cortical projections. In area B17, the mean density of SP and NFT reached a maximum in lamina III and in laminae II and III respectively. In B18, mean SP density was maximal in laminae III and IV and NFT density in laminae II and III. No significant correlations were observed in any cortical lamina between the density of SP and patient age. However, the density of NFT in laminae III, IV and VI in B18 was negatively correlated with patient age. In addition, in B18, the density of SP in lamina II and lamina V was negatively correlated with disease duration and disease onset respectively. Although these results suggest that SP and NFT might spread between B17 and B18 via the feedforward short cortico-cortical projections, it is also possible that the longer cortico-cortical and cortico-subcortical connections may be involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diabetic retinopathy (DR) remains the leading cause of blindness among working-age individuals in developed countries. Current treatments for DR are indicated in advanced stages of the disease and are associated with significant adverse effects. Therefore, new pharmacological treatments for the early stages of DR are needed. DR has been classically considered to be a microcirculatory disease of the retina. However, there is growing evidence to suggest that retinal neurodegeneration is an early event in the pathogenesis of DR, which participates in the microcirculatory abnormalities that occur in DR. Therefore, the study of the underlying mechanisms that lead to neurodegeneration will be essential for identifying new therapeutic targets. From the clinical point of view, the identification of those patients in whom retinal neurodegeneration appears will be crucial for implementing early treatment based on neuroprotective drugs. When the early stages of DR are the therapeutic target, it would be inconceivable to recommend an aggressive treatment such as intravitreous injections. By contrast, topical administration of neuroprotective drugs by using eye drops is a possible option. However, clinical trials to determine the safety and effectiveness of this non-invasive route, as well as a standardisation of the methods for monitoring neurodegeneration, are needed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cellular thiols are critical moieties in signal transduction, regulation of gene expression, and ultimately are determinants of specific protein activity. Whilst protein bound thiols are the critical effector molecules, low molecular weight thiols, such as glutathione, play a central role in cytoprotection through (1) direct consumption of oxidants, (2) regeneration of protein thiols and (3) export of glutathione containing mixed disulphides. The brain is particularly vulnerable to oxidative stress, as it consumes 20% of oxygen load, contains high concentrations of polyunsaturated fatty acids and iron in certain regions, and expresses low concentrations of enzymic antioxidants. There is substantial evidence for a role for oxidative stress in neurodegenerative disease, where excitotoxic, redox cycling and mitochondrial dysfunction have been postulated to contribute to the enhanced oxidative load. Others have suggested that loss of important trophic factors may underlie neurodegeneration. However, the two are not mutually exclusive; using cell based model systems, low molecular weight antioxidants have been shown to play an important neuroprotective role in vitro, where neurotrophic factors have been suggested to modulate glutathione levels. Glutathione levels are regulated by substrate availability, synthetic enzyme and metabolic enzyme activity, and by the presence of other antioxidants, which according to the redox potential, consume or regenerate GSH from its oxidised partner. Therefore we have investigated the hypothesis that amyloid beta neurotoxicity is mediated by reactive oxygen species, where trophic factor cytoprotection against oxidative stress is achieved through regulation of glutathione levels. Using PC12 cells as a model system, amyloid beta 25-35 caused a shift in DCF fluorescence after four hours in culture. This fluorescence shift was attenuated by both desferioxamine and NGF. After four hours, cellular glutathione levels were depleted by as much as 75%, however, 24 hours following oxidant exposure, glutathione concentration was restored to twice the concentration seen in controls. NGF prevented both the loss of viability seen after 24 hours amyloid beta treatment and also protected glutathione levels. NGF decreased the total cellular glutathione concentration but did not affect expression of GCS. In conclusion, loss of glutathione precedes cell death in PC12 cells. However, at sublethal doses the surviving fraction respond to oxidative stress by increasing glutathione levels, where this is achieved, at least in part, at the gene level through upregulation of GCS. Whilst NGF does protect against oxidative toxicity, this is not achieved through upregulation of GCS or glutathione.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pathological lesions in the form of extracellular protein deposits, intracellular inclusions and changes in cell morphology occur in the brain in the majority of neurodegenerative disorders. Studies of the presence, distribution, and molecular determinants of these lesions are often used to define individual disorders and to establish the mechanisms of lesion pathogenesis. In most disorders, however, the relationship between the appearance of a lesion and the underlying disease process is unclear. Two hypotheses are proposed which could explain this relationship: (i) lesions are the direct cause of the observed neurodegeneration ('causal' hypothesis); and (ii) lesions are a reaction to neurodegeneration ('reaction' hypothesis). These hypotheses are considered in relation to studies of the morphology and molecular determinants of lesions, the effects of gene mutations, degeneration induced by head injury, the effects of experimentally induced brain lesions, transgenic studies and the degeneration of anatomical pathways. The balance of evidence suggests that in many disorders, the appearance of the pathological lesions is a reaction to degenerative processes rather than being their cause. Such a conclusion has implications both for the classification of neurodegenerative disorders and for studies of disease pathogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Discrete pathological lesions, which include extracellular protein deposits, intracellular inclusions and changes in cell morphology, occur in the brain in the majority of neurodegenerative disorders. These lesions are not randomly distributed in the brain but exhibit a spatial pattern, that is, a departure from randomness towards regularity or clustering. The spatial pattern of a lesion may reflect pathological processes affecting particular neuroanatomical structures and, therefore, studies of spatial pattern may help to elucidate the pathogenesis of a lesion and of the disorders themselves. The present article reviews first, the statistical methods used to detect spatial patterns and second, the types of spatial patterns exhibited by pathological lesions in a variety of disorders which include Alzheimer's disease, Down syndrome, dementia with Lewy bodies, Creutzfeldt-Jakob disease, Pick's disease and corticobasal degeneration. These studies suggest that despite the morphological and molecular diversity of brain lesions, they often exhibit a common type of spatial pattern (i.e. aggregation into clusters that are regularly distributed in the tissue). The pathogenic implications of spatial pattern analysis are discussed with reference to the individual disorders and to studies of neurodegeneration as a whole.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction Mild cognitive impairment (MCI) is a term used to describe a level of decline in cognition which is seen as an intermediate stage between normal ageing and dementia, and which many consider to be a prodromal stage of neurodegeneration that may become dementia. That is, it is perceived as a high risk level of cognitive change. The increasing burden of dementia in our society, but also our increasing understanding of its risk factors and potential interventions, require diligent management of MCI in order to find strategies that produce effective prevention of dementia. Aim To update knowledge regarding mild cognitive impairment, and to bring together and appraise evidence about the main features of clinical interest: definitions, prevalence and stability, risk factors, screening, and management and intervention. Methods Literature review and consensus of expert opinion. Results and conclusion MCI describes a level of impairment in which deteriorating cognitive functions still allow for reasonable independent living, including some compensatory strategies. While there is evidence for some early risk factors, there is still a need to more precisely delineate and distinguish early manifestations of frank dementia from cognitive impairment that is less likely to progress to dementia, and furthermore to develop improved prospective evidence for positive response to intervention. An important limitation derives from the scarcity of studies that take MCI as an endpoint. Strategies for effective management suffer from the same limitation, since most studies have focused on dementia. Behavioural changes may represent the most cost-effective approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This edition of the popular text incorporates recent advances in neurobiology enabled by modern molecular biology techniques. Understanding how the brain works from a molecular level allows research to better understand behaviours, cognition, and neuropathologies. Since the appearance six years ago of the second edition, much more has been learned about the molecular biology of development and its relations with early evolution. This "evodevo" (as it has come to be known) framework also has a great deal of bearing on our understanding of neuropathologies as dysfunction of early onset genes can cause neurodegeneration in later life. Advances in our understanding of the genomes and proteomes of a number of organisms also greatly influence our understanding of neurobiology. This book will be of particular interest to biomedical undergraduates undertaking a neuroscience unit, neuroscience postgraduates, physiologists, pharmacologists. It is also a useful basic reference for university libraries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the earliest descriptions of the disease, senile plaques (SP) and neurofibrillary tangles (NFT) have been regarded as the pathological 'hallmarks' of Alzheimer's disease (AD). Whether or not SP and NFT are sufficient cause to explain the neurodegeneration of AD is controversial. The major molecular constituents of these lesions, viz., beta-amyloid (Ass) and tau, have played a defining role both in the diagnosis of the disease and in studies of pathogenesis. The molecular biology of SP and NFT, however, is complex with many chemical constituents. An individual constituent could be the residue of a pathogenic gene mutation, result from cellular degeneration, or reflect the acquisition of new proteins by diffusion and molecular binding. This review proposes that the molecular composition of SP and NFT is largely a consequence of cell degeneration and the later acquisition of proteins. Such a conclusion has implications both for the diagnosis of AD and in studies of disease pathogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The most influential theory to explain the pathogenesis of Alzheimer's disease (AD) has been the "Amyloid Cascade Hypothesis" (ACH) first formulated in 1992. The ACH proposes that the deposition of ß-amyloid (Aß) is the initial pathological event in AD leading to the formation of senile plaques (SPs) and then to neurofibrillary tangles (NFTs) death of neurons, and ultimately dementia. This paper examines two questions regarding the ACH: (1) is there a relationship between the pathogenesis of SPs and NFTs, and (2) what is the relationship of these lesions to disease pathogenesis? These questions are examined in relation to studies of the morphology and molecular determinants of SPs and NFTs, the effects of gene mutation, degeneration induced by head injury, the effects of experimentally induced brain lesions, transgenic studies, and the degeneration of anatomical pathways. It was concluded that SPs and NFTs develop independently and may be the products rather than the causes of neurodegeneration in AD. A modification to the ACH is proposed which may better explain the pathogenesis of AD, especially of late-onset cases of the disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent research suggests cell-to-cell transfer of pathogenic proteins such as tau and α-synuclein may play a role in neurodegeneration. Pathogenic spread along neural pathways may give rise to specific spatial patterns of the neuronal cytoplasmic inclusions (NCI) characteristic of these disorders. Hence, the spatial patterns of NCI were compared in four tauopathies, viz., Alzheimer's disease, Pick's disease, corticobasal degeneration, and progressive supranuclear palsy, two synucleinopathies, viz., dementia with Lewy bodies and multiple system atrophy, the 'fused in sarcoma' (FUS)-immunoreactive inclusions in neuronal intermediate filament inclusion disease, and the transactive response DNA-binding protein (TDP-43)-immunoreactive inclusions in frontotemporal lobar degeneration, a TDP-43 proteinopathy (FTLD-TDP). Regardless of molecular group or morphology, NCI were most frequently aggregated into clusters, the clusters being regularly distributed parallel to the pia mater. In a significant proportion of regions, the regularly distributed clusters were in the size range 400-800 μm, approximating to the dimension of cell columns associated with the cortico-cortical pathways. The data suggest that cortical NCI in different disorders exhibit a similar spatial pattern in the cortex consistent with pathogenic spread along anatomical pathways. Hence, treatments designed to protect the cortex from neurodegeneration may be applicable across several different disorders. © 2012 Springer-Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transglutaminase 2 has been postulated to be involved in the pathogenesis of central nervous system neurodegenerative disorders. However, its role in neuronal cell death remains to be elucidated. Excitotoxicity is a common event underlying neurodegeneration. We aimed to evaluate the protein targets for transglutaminase 2 in cell response to NMDA-induced excitotoxic stress, using SH-SY5Y neuroblastoma cells which express high tranglutaminase 2 levels upon retinoic acid-driven differentiation toward neurons. NMDA-evoked calcium increase led to transglutaminase 2 activation that mediated cell survival, as at first suggested by the exacerbation of NMDA toxicity in the presence of R283, a synthetic competitive inhibitor of transglutaminase active site. Assays of R283-mediated transglutaminase inhibition showed the involvement of enzyme activity in NMDA-induced reduction in protein basal levels of pro-apoptotic caspase-3 and the stress protein Hsp20. However, this occurred in a way different from protein cross-linking, given that macromolecular assemblies were not observed in our experimental conditions for both proteins. Co-immunoprecipitation experiments provided evidence for the interaction, in basal conditions, between transglutaminase 2 and Hsp20, as well as between Hsp20 and Hsp27, a major anti-apoptotic protein promoting caspase-3 inactivation and degradation. NMDA treatment disrupted both these interactions that were restored upon transglutaminase 2 inhibition with R283. These results suggest that transglutaminase 2 might be protective against NMDA-evoked excitotoxic insult in neuronal-like SH-SY5Y cells in a way, independent from transamidation that likely involves its interaction with the complex Hsp20/Hsp27 playing a pro-survival role. © 2011 Springer-Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Much of the research on visual hallucinations (VHs) has been conducted in the context of eye disease and neurodegenerative conditions, but little is known about these phenomena in psychiatric and nonclinical populations. The purpose of this article is to bring together current knowledge regarding VHs in the psychosis phenotype and contrast this data with the literature drawn from neurodegenerative disorders and eye disease. The evidence challenges the traditional views that VHs are atypical or uncommon in psychosis. The weighted mean for VHs is 27% in schizophrenia, 15% in affective psychosis, and 7.3% in the general community. VHs are linked to a more severe psychopathological profile and less favorable outcome in psychosis and neurodegenerative conditions. VHs typically co-occur with auditory hallucinations, suggesting a common etiological cause. VHs in psychosis are also remarkably complex, negative in content, and are interpreted to have personal relevance. The cognitive mechanisms of VHs in psychosis have rarely been investigated, but existing studies point to source-monitoring deficits and distortions in top-down mechanisms, although evidence for visual processing deficits, which feature strongly in the organic literature, is lacking. Brain imaging studies point to the activation of visual cortex during hallucinations on a background of structural and connectivity changes within wider brain networks. The relationship between VHs in psychosis, eye disease, and neurodegeneration remains unclear, although the pattern of similarities and differences described in this review suggests that comparative studies may have potentially important clinical and theoretical implications. © 2014 The Author.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transglutaminases (Tgases) are a widely distributed group of enzymes that catalyse the post-translational modification of proteins by the formation of isopeptide bonds. This occurs either through protein cross-linking via epsilon-(gamma-glutamyl)lysine bonds or through incorporation of primary amines at selected peptide-bound glutamine residues. The cross-linked products, often of high molecular mass, are highly resistant to mechanical challenge and proteolytic degradation, and their accumulation is found in a number of tissues and processes where such properties are important, including skin, hair, blood clotting and wound healing. However, deregulation of enzyme activity generally associated with major disruptions in cellular homoeostatic mechanisms has resulted in these enzymes contributing to a number of human diseases, including chronic neurodegeneration, neoplastic diseases, autoimmune diseases, diseases involving progressive tissue fibrosis and diseases related to the epidermis of the skin. In the present review we detail the structural and regulatory features important in mammalian Tgases, with particular focus on the ubiquitous type 2 tissue enzyme. Physiological roles and substrates are discussed with a view to increasing and understanding the pathogenesis of the diseases associated with transglutaminases. Moreover the ability of these enzymes to modify proteins and act as biological glues has not gone unnoticed by the commercial sector. As a consequence, we have included some of the present and future biotechnological applications of this increasingly important group of enzymes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review provides an overview of the biochemistry of thiol redox couples and the significance of thiol redox homeostasis in neurodegenerative disease. The discussion is centred on cysteine/cystine redox balance, the significance of the xc- cystine-glutamate exchanger and the association between protein thiol redox balance and neurodegeneration, with particular reference to Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and glaucoma. The role of thiol disulphide oxidoreductases in providing neuroprotection is also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While the Amyloid Precursor Protein (APP) plays a central role in Alzheimer's disease, its cellular function still remains largely unclear. It was our goal to establish APP function which will provide insights into APP's implication in Alzheimer's disease. Using our recently developed proteo-liposome assay we established the interactome of APP's intracellular domain (known as AICD), thereby identifying novel APP interactors that provide mechanistic insights into APP function. By combining biochemical, cell biological and genetic approaches we validated the functional significance of one of these novel interactors. Here we show that APP binds the PIKfyve complex, an essential kinase for the synthesis of the endosomal phosphoinositide phosphatidylinositol-3,5-bisphosphate. This signalling lipid plays a crucial role in endosomal homeostasis and receptor sorting. Loss of PIKfyve function by mutation causes profound neurodegeneration in mammals. Using C. elegans genetics we demonstrate that APP functionally cooperates with PIKfyve in vivo. This regulation is required for maintaining endosomal and neuronal function. Our findings establish an unexpected role for APP in the regulation of endosomal phosphoinositide metabolism with dramatic consequences for endosomal biology and important implications for our understanding of Alzheimer's disease.