5 resultados para neuroanatomy
em Aston University Research Archive
Functional neuroanatomy and behavioural correlates of the basal ganglia:evidence from lesion studies
Resumo:
Introduction: The basal ganglia are interconnected with cortical areas involved in behavioural, cognitive and emotional processes, in addition to movement regulation. Little is known about which of these functions are associated with individual basal ganglia substructures. Methods: Pubmed was searched for literature related to behavioural, cognitive and emotional symptoms associated with focal lesions to basal ganglia structures in humans. Results: Six case-control studies and two case reports were identified as relevant. Lesion sites included the caudate nucleus, putamen and globus pallidus. These were associated with a spectrum of behavioural and cognitive symptoms, including abulia, poor working memory and deficits in emotional recognition. Discussion: It is often difficult to precisely map associations between cognitive, emotional or behavioural functions and particular basal ganglia substructures, due to the non-specific nature of the lesions. However, evidence from lesion studies shows that most symptoms correspond with established non-motor frontal-subcortical circuits. © 2013-IOS Press and the authors. All rights reserved.
Resumo:
Auditory sensory gating (ASG) is the ability in individuals to suppress incoming irrelevant sensory input, indexed by evoked response to paired auditory stimuli. ASG is impaired in psychopathology such as schizophrenia, in which it has been proposed as putative endophenotype. This study aims to characterise electrophysiological properties of the phenomenon using MEG in time and frequency domains as well as to localise putative networks involved in the process at both sensor and source level. We also investigated the relationship between ASG measures and personality profiles in healthy participants in the light of its candidate endophenotype role in psychiatric disorders. Auditory evoked magnetic fields were recorded in twenty seven healthy participants by P50 ‘paired-click’ paradigm presented in pairs (conditioning stimulus S1- testing stimulus S2) at 80dB, separated by 250msec with inter trial interval of 7-10 seconds. Gating ratio in healthy adults ranged from 0.5 to 0.8 suggesting dimensional nature of P50 ASG. The brain regions active during this process were bilateral superior temporal gyrus (STG) and bilateral inferior frontal gyrus (IFG); activation was significantly stronger in IFG during S2 as compared to S1 (at p<0.05). Measures of effective connectivity between these regions using DCM modelling revealed the role of frontal cortex in modulating ASG as suggested by intracranial studies, indicating major role of inhibitory interneuron connections. Findings from this study identified a unique event-related oscillatory pattern for P50 ASG with alpha (STG)-beta (IFG) desynchronization and increase in cortical oscillatory gamma power (IFG) during S2 condition as compared to S1. These findings show that the main generator for P50 response is within temporal lobe and that inhibitory interneurons and gamma oscillations in the frontal cortex contributes substantially towards sensory gating. Our findings also show that ASG is a predictor of personality profiles (introvert vs extrovert dimension).
Resumo:
Human swallowing represents a complex highly coordinated sensorimotor function whose functional neuroanatomy remains incompletely understood. Specifically, previous studies have failed to delineate the temporo-spatial sequence of those cerebral loci active during the differing phases of swallowing. We therefore sought to define the temporal characteristics of cortical activity associated with human swallowing behaviour using a novel application of magnetoencephalography (MEG). In healthy volunteers (n = 8, aged 28-45), 151-channel whole cortex MEG was recorded during the conditions of oral water infusion, volitional wet swallowing (5 ml bolus), tongue thrust or rest. Each condition lasted for 5 s and was repeated 20 times. Synthetic aperture magnetometry (SAM) analysis was performed on each active epoch and compared to rest. Temporal sequencing of brain activations utilised time-frequency wavelet plots of regions selected using virtual electrodes. Following SAM analysis, water infusion preferentially activated the caudolateral sensorimotor cortex, whereas during volitional swallowing and tongue movement, the superior sensorimotor cortex was more strongly active. Time-frequency wavelet analysis indicated that sensory input from the tongue simultaneously activated caudolateral sensorimotor and primary gustatory cortex, which appeared to prime the superior sensory and motor cortical areas, involved in the volitional phase of swallowing. Our data support the existence of a temporal synchrony across the whole cortical swallowing network, with sensory input from the tongue being critical. Thus, the ability to non-invasively image this network, with intra-individual and high temporal resolution, provides new insights into the brain processing of human swallowing. © 2004 Elsevier Inc. All rights reserved.
Resumo:
The objective of this study was to determine the degree of white matter pathology in the cerebral cortex in cases of variant Creutzfeldt-Jakob disease (vCJD) and to study the relationships between the white matter and grey matter pathologies. Hence, the pathological changes in cortical white matter were studied in individual gyri of the frontal, parietal, occipital, and temporal cortex in eleven cases of vCJD. Vacuolation (‘spongiform change’), deposition of the disease form of prion protein (PrPsc) in the form of discrete PrP deposits, and gliosis were observed in the white matter of virtually all cortical regions studied. Mean density of the vacuoles in the white matter was greater in the parietal lobe compared with the frontal, occipital, and temporal lobes but there were fewer glial cells in the occipital lobe compared with the other cortical regions. In the white matter of the frontal cortex, vacuole density was negatively correlated with the density of both glial cell nuclei and the PrP deposits. In addition, the densities of glial cells and PrP deposits were positively correlated in the frontal and parietal cortex. In the white matter of the frontal cortex and inferior temporal gyrus, there was a negative correlation between the densities of the vacuoles and the number of surviving neurons in laminae V/VI of the adjacent grey matter. In addition, in the frontal cortex, vacuole density in the white matter was negatively correlated with the density of the diffuse PrP deposits in laminae II/III and V/VI of the adjacent grey matter. The densities of PrP deposits in the white matter of the frontal cortex were positively correlated with the density of the diffuse PrP deposits in laminae II/III and V/V1 and with the number of surviving neurons in laminae V/V1. The data suggest that in the white matter in vCJD, gliosis is associated with the development of PrP deposits while the appearance of the vacuolation is a later development. In addition, neuronal loss and PrP deposition in the lower cortical laminae of the grey matter may be a consequence of axonal degeneration within the white matter.
Resumo:
Facial beauty is an honest signal of the genotypic and phenotypic quality of the bearer. Beautiful people are thus regarded as high-value mates who maximize reproductive success by producing viable offspring. Here, the functional neuroanatomy of facial beauty is reviewed and placed into the context of the distributed model for human face perception. A proposed extension of the distributed model is provided, which takes into account the neuroanatomy of beautiful face perception.