10 resultados para network analyzer measurement
em Aston University Research Archive
Resumo:
This paper determines the capability of two photogrammetric systems in terms of their measurement uncertainty in an industrial context. The first system – V-STARS inca3 from Geodetic Systems Inc. – is a commercially available measurement solution. The second system comprises an off-the-shelf Nikon D700 digital camera fitted with a 28 mm Nikkor lens and the research-based Vision Measurement Software (VMS). The uncertainty estimate of these two systems is determined with reference to a calibrated constellation of points determined by a Leica AT401 laser tracker. The calibrated points have an average associated standard uncertainty of 12·4 μm, spanning a maximum distance of approximately 14·5 m. Subsequently, the two systems’ uncertainty was determined. V-STARS inca3 had an estimated standard uncertainty of 43·1 μm, thus outperforming its manufacturer's specification; the D700/VMS combination achieved a standard uncertainty of 187 μm.
Resumo:
Data Envelopment Analysis (DEA) is one of the most widely used methods in the measurement of the efficiency and productivity of Decision Making Units (DMUs). DEA for a large dataset with many inputs/outputs would require huge computer resources in terms of memory and CPU time. This paper proposes a neural network back-propagation Data Envelopment Analysis to address this problem for the very large scale datasets now emerging in practice. Neural network requirements for computer memory and CPU time are far less than that needed by conventional DEA methods and can therefore be a useful tool in measuring the efficiency of large datasets. Finally, the back-propagation DEA algorithm is applied to five large datasets and compared with the results obtained by conventional DEA.
Resumo:
Satellite-borne scatterometers are used to measure backscattered micro-wave radiation from the ocean surface. This data may be used to infer surface wind vectors where no direct measurements exist. Inherent in this data are outliers owing to aberrations on the water surface and measurement errors within the equipment. We present two techniques for identifying outliers using neural networks; the outliers may then be removed to improve models derived from the data. Firstly the generative topographic mapping (GTM) is used to create a probability density model; data with low probability under the model may be classed as outliers. In the second part of the paper, a sensor model with input-dependent noise is used and outliers are identified based on their probability under this model. GTM was successfully modified to incorporate prior knowledge of the shape of the observation manifold; however, GTM could not learn the double skinned nature of the observation manifold. To learn this double skinned manifold necessitated the use of a sensor model which imposes strong constraints on the mapping. The results using GTM with a fixed noise level suggested the noise level may vary as a function of wind speed. This was confirmed by experiments using a sensor model with input-dependent noise, where the variation in noise is most sensitive to the wind speed input. Both models successfully identified gross outliers with the largest differences between models occurring at low wind speeds. © 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The leadership categorisation theory suggests that followers rely on a hierarchical cognitive structure in perceiving leaders and the leadership process, which consists of three levels; superordinate, basic and subordinate. The predominant view is that followers rely on Implicit Leadership Theories (ILTs) at the basic level in making judgments about managers. The thesis examines whether this presumption is true by proposing and testing two competing conceptualisations; namely the congruence between the basic level ILTs (general leader) and actual manager perceptions, and subordinate level ILTs (job-specific leader) and actual manager. The conceptualisation at the job-specific level builds on context-related assertions of the ILT explanatory models: leadership categorisation, information processing and connectionist network theories. Further, the thesis addresses the effects of ILT congruence at the group level. The hypothesised model suggests that Leader-Member Exchange (LMX) will act as a mediator between ILT congruence and outcomes. Three studies examined the proposed model. The first was cross-sectional with 175 students reporting on work experience during a 1-year industrial placement. The second was longitudinal and had a sample of 343 students engaging in a business simulation in groups with formal leadership. The final study was a cross-sectional survey in several organisations with a sample of 178. A novel approach was taken to congruence analysis; the hypothesised models were tested using Latent Congruence Modelling (LCM), which accounts for measurement error and overcomes the majority of limitations of traditional approaches. The first two studies confirm the traditional theorised view that employees rely on basic-level ILTs in making judgments about their managers with important implications, and show that LMX mediates the relationship between ILT congruence and work-related outcomes (performance, job satisfaction, well-being, task satisfaction, intragroup conflict, group satisfaction, team realness, team-member exchange, group performance). The third study confirms this with conflict, well-being, self-rated performance and commitment as outcomes.
Resumo:
Guest editorial Ali Emrouznejad is a Senior Lecturer at the Aston Business School in Birmingham, UK. His areas of research interest include performance measurement and management, efficiency and productivity analysis as well as data mining. He has published widely in various international journals. He is an Associate Editor of IMA Journal of Management Mathematics and Guest Editor to several special issues of journals including Journal of Operational Research Society, Annals of Operations Research, Journal of Medical Systems, and International Journal of Energy Management Sector. He is in the editorial board of several international journals and co-founder of Performance Improvement Management Software. William Ho is a Senior Lecturer at the Aston University Business School. Before joining Aston in 2005, he had worked as a Research Associate in the Department of Industrial and Systems Engineering at the Hong Kong Polytechnic University. His research interests include supply chain management, production and operations management, and operations research. He has published extensively in various international journals like Computers & Operations Research, Engineering Applications of Artificial Intelligence, European Journal of Operational Research, Expert Systems with Applications, International Journal of Production Economics, International Journal of Production Research, Supply Chain Management: An International Journal, and so on. His first authored book was published in 2006. He is an Editorial Board member of the International Journal of Advanced Manufacturing Technology and an Associate Editor of the OR Insight Journal. Currently, he is a Scholar of the Advanced Institute of Management Research. Uses of frontier efficiency methodologies and multi-criteria decision making for performance measurement in the energy sector This special issue aims to focus on holistic, applied research on performance measurement in energy sector management and for publication of relevant applied research to bridge the gap between industry and academia. After a rigorous refereeing process, seven papers were included in this special issue. The volume opens with five data envelopment analysis (DEA)-based papers. Wu et al. apply the DEA-based Malmquist index to evaluate the changes in relative efficiency and the total factor productivity of coal-fired electricity generation of 30 Chinese administrative regions from 1999 to 2007. Factors considered in the model include fuel consumption, labor, capital, sulphur dioxide emissions, and electricity generated. The authors reveal that the east provinces were relatively and technically more efficient, whereas the west provinces had the highest growth rate in the period studied. Ioannis E. Tsolas applies the DEA approach to assess the performance of Greek fossil fuel-fired power stations taking undesirable outputs into consideration, such as carbon dioxide and sulphur dioxide emissions. In addition, the bootstrapping approach is deployed to address the uncertainty surrounding DEA point estimates, and provide bias-corrected estimations and confidence intervals for the point estimates. The author revealed from the sample that the non-lignite-fired stations are on an average more efficient than the lignite-fired stations. Maethee Mekaroonreung and Andrew L. Johnson compare the relative performance of three DEA-based measures, which estimate production frontiers and evaluate the relative efficiency of 113 US petroleum refineries while considering undesirable outputs. Three inputs (capital, energy consumption, and crude oil consumption), two desirable outputs (gasoline and distillate generation), and an undesirable output (toxic release) are considered in the DEA models. The authors discover that refineries in the Rocky Mountain region performed the best, and about 60 percent of oil refineries in the sample could improve their efficiencies further. H. Omrani, A. Azadeh, S. F. Ghaderi, and S. Abdollahzadeh presented an integrated approach, combining DEA, corrected ordinary least squares (COLS), and principal component analysis (PCA) methods, to calculate the relative efficiency scores of 26 Iranian electricity distribution units from 2003 to 2006. Specifically, both DEA and COLS are used to check three internal consistency conditions, whereas PCA is used to verify and validate the final ranking results of either DEA (consistency) or DEA-COLS (non-consistency). Three inputs (network length, transformer capacity, and number of employees) and two outputs (number of customers and total electricity sales) are considered in the model. Virendra Ajodhia applied three DEA-based models to evaluate the relative performance of 20 electricity distribution firms from the UK and the Netherlands. The first model is a traditional DEA model for analyzing cost-only efficiency. The second model includes (inverse) quality by modelling total customer minutes lost as an input data. The third model is based on the idea of using total social costs, including the firm’s private costs and the interruption costs incurred by consumers, as an input. Both energy-delivered and number of consumers are treated as the outputs in the models. After five DEA papers, Stelios Grafakos, Alexandros Flamos, Vlasis Oikonomou, and D. Zevgolis presented a multiple criteria analysis weighting approach to evaluate the energy and climate policy. The proposed approach is akin to the analytic hierarchy process, which consists of pairwise comparisons, consistency verification, and criteria prioritization. In the approach, stakeholders and experts in the energy policy field are incorporated in the evaluation process by providing an interactive mean with verbal, numerical, and visual representation of their preferences. A total of 14 evaluation criteria were considered and classified into four objectives, such as climate change mitigation, energy effectiveness, socioeconomic, and competitiveness and technology. Finally, Borge Hess applied the stochastic frontier analysis approach to analyze the impact of various business strategies, including acquisition, holding structures, and joint ventures, on a firm’s efficiency within a sample of 47 natural gas transmission pipelines in the USA from 1996 to 2005. The author finds that there were no significant changes in the firm’s efficiency by an acquisition, and there is a weak evidence for efficiency improvements caused by the new shareholder. Besides, the author discovers that parent companies appear not to influence a subsidiary’s efficiency positively. In addition, the analysis shows a negative impact of a joint venture on technical efficiency of the pipeline company. To conclude, we are grateful to all the authors for their contribution, and all the reviewers for their constructive comments, which made this special issue possible. We hope that this issue would contribute significantly to performance improvement of the energy sector.
Resumo:
The purpose of this paper is to delineate a green supply chain (GSC) performance measurement framework using an intra-organisational collaborative decision-making (CDM) approach. A fuzzy analytic network process (ANP)-based green-balanced scorecard (GrBSc) has been used within the CDM approach to assist in arriving at a consistent, accurate and timely data flow across all cross-functional areas of a business. A green causal relationship is established and linked to the fuzzy ANP approach. The causal relationship involves organisational commitment, eco-design, GSC process, social performance and sustainable performance constructs. Sub-constructs and sub-sub-constructs are also identified and linked to the causal relationship to form a network. The fuzzy ANP approach suitably handles the vagueness of the linguistics information of the CDM approach. The CDM approach is implemented in a UK-based carpet-manufacturing firm. The performance measurement approach, in addition to the traditional financial performance and accounting measures, aids in firms decision-making with regard to the overall organisational goals. The implemented approach assists the firm in identifying further requirements of the collaborative data across the supply-cain and information about customers and markets. Overall, the CDM-based GrBSc approach assists managers in deciding if the suppliers performances meet the industry and environment standards with effective human resource. © 2013 Taylor & Francis.
Resumo:
Efficiency in the mutual fund (MF), is one of the issues that has attracted many investors in countries with advanced financial market for many years. Due to the need for frequent study of MF's efficiency in short-term periods, investors need a method that not only has high accuracy, but also high speed. Data envelopment analysis (DEA) is proven to be one of the most widely used methods in the measurement of the efficiency and productivity of decision making units (DMUs). DEA for a large dataset with many inputs/outputs would require huge computer resources in terms of memory and CPU time. This paper uses neural network back-ropagation DEA in measurement of mutual funds efficiency and shows the requirements, in the proposed method, for computer memory and CPU time are far less than that needed by conventional DEA methods and can therefore be a useful tool in measuring the efficiency of a large set of MFs. Copyright © 2014 Inderscience Enterprises Ltd.
Resumo:
This paper details a method of estimating the uncertainty of dimensional measurement for a three-dimensional coordinate measurement machine. An experimental procedure was developed to compare three-dimensional coordinate measurements with calibrated reference points. The reference standard used to calibrate these reference points was a fringe counting interferometer with a multilateration-like technique employed to establish three-dimensional coordinates. This is an extension of the established technique of comparing measured lengths with calibrated lengths. Specifically a distributed coordinate measurement device was tested which consisted of a network of Rotary-Laser Automatic Theodolites (R-LATs), this system is known commercially as indoor GPS (iGPS). The method was found to be practical and was used to estimate that the uncertainty of measurement for the basic iGPS system is approximately 1 mm at a 95% confidence level throughout a measurement volume of approximately 10 m × 10 m × 1.5 m. © 2010 IOP Publishing Ltd.
Resumo:
Advances in the area of industrial metrology have generated new technologies that are capable of measuring components with complex geometry and large dimensions. However, no standard or best-practice guides are available for the majority of such systems. Therefore, these new systems require appropriate testing and verification in order for the users to understand their full potential prior to their deployment in a real manufacturing environment. This is a crucial stage, especially when more than one system can be used for a specific measurement task. In this paper, two relatively new large-volume measurement systems, the mobile spatial co-ordinate measuring system (MScMS) and the indoor global positioning system (iGPS), are reviewed. These two systems utilize different technologies: the MScMS is based on ultrasound and radiofrequency signal transmission and the iGPS uses laser technology. Both systems have components with small dimensions that are distributed around the measuring area to form a network of sensors allowing rapid dimensional measurements to be performed in relation to large-size objects, with typical dimensions of several decametres. The portability, reconfigurability, and ease of installation make these systems attractive for many industries that manufacture large-scale products. In this paper, the major technical aspects of the two systems are briefly described and compared. Initial results of the tests performed to establish the repeatability and reproducibility of these systems are also presented. © IMechE 2009.
Resumo:
This paper details a method of determining the uncertainty of dimensional measurement for a three dimensional coordinate measurement machine. An experimental procedure was developed to compare three dimensional coordinate measurements with calibrated reference points. The reference standard used to calibrate these reference points was a fringe counting interferometer with the multilateration technique employed to establish three dimensional coordinates. This is an extension of the established technique of comparing measured lengths with calibrated lengths. Specifically a distributed coordinate measurement device was tested which consisted of a network of Rotary-Laser Automatic Theodolites (R-LATs), this system is known commercially as indoor GPS (iGPS). The method was found to be practical and able to establish that the expanded uncertainty of the basic iGPS system was approximately 1 mm at a 95% confidence level. © Springer-Verlag Berlin Heidelberg 2010.