4 resultados para nanosphere

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate an all-fiber passively Q-switched erbiumdoped fiber laser (EDFL) using a gold-nanosphere (GNS) based saturable absorber (SA) with evanescent field interaction. Using the interaction of evanescent field for fabricating SAs, long nonlinear interaction length of evanescent wave and GNSs can be achieved. The GNSs are synthesized from mixing solution of chloroauricacid (HAuCl4) and sodium citrate by the heating effects of the microfiber's evanescent field radiation. The proposed passively Q-switched EDFL could give output pulses at 1562 nm with pulse width of 1.78 μs, a repetition rate of 58.1 kHz, a pulse energy of 133 nJ and a output power of 7.7 mWwhen pumped by a 980 nm laser diode of 237 mW. © 2014 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tin oxide is considered to be one of the most promising semiconductor oxide materials for use as a gas sensor. However, a simple route for the controllable build-up of nanostructured, sufficiently pure and hierarchical SnO2 structures for gas sensor applications is still a challenge. In the current work, an aqueous SnO2 nanoparticulate precursor sol, which is free of organic contaminants and sorbed ions and is fully stable over time, was prepared in a highly reproducible manner from an alkoxide Sn(OR)4 just by mixing it with a large excess of pure neutral water. The precursor is formed as a separate liquid phase. The structure and purity of the precursor is revealed using XRD, SAXS, EXAFS, HRTEM imaging, FTIR, and XRF analysis. An unconventional approach for the estimation of the particle size based on the quantification of the Sn-Sn contacts in the structure was developed using EXAFS spectroscopy and verified using HRTEM. To construct sensors with a hierarchical 3D structure, we employed an unusual emulsification technique not involving any additives or surfactants, using simply the extraction of the liquid phase, water, with the help of dry butanol under ambient conditions. The originally generated crystalline but yet highly reactive nanoparticles form relatively uniform spheres through self-assembly and solidify instantly. The spheres floating in butanol were left to deposit on the surface of quartz plates bearing sputtered gold electrodes, producing ready-for-use gas sensors in the form of ca. 50 μm thick sphere-based-films. The films were dried for 24 h and calcined at 300°C in air before use. The gas sensitivity of the structures was tested in the temperature range of 150-400°C. The materials showed a very quickly emerging and reversible (20-30 times) increase in electrical conductivity as a response to exposure to air containing 100 ppm of H2 or CO and short (10 s) recovery times when the gas flow was stopped.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemical functionality within porous architectures dictates their performance as heterogeneous catalysts; however, synthetic routes to control the spatial distribution of individual functions within porous solids are limited. Here we report the fabrication of spatially orthogonal bifunctional porous catalysts, through the stepwise template removal and chemical functionalization of an interconnected silica framework. Selective removal of polystyrene nanosphere templates from a lyotropic liquid crystal-templated silica sol–gel matrix, followed by extraction of the liquid crystal template, affords a hierarchical macroporous–mesoporous architecture. Decoupling of the individual template extractions allows independent functionalization of macropore and mesopore networks on the basis of chemical and/or size specificity. Spatial compartmentalization of, and directed molecular transport between, chemical functionalities affords control over the reaction sequence in catalytic cascades; herein illustrated by the Pd/Pt-catalysed oxidation of cinnamyl alcohol to cinnamic acid. We anticipate that our methodology will prompt further design of multifunctional materials comprising spatially compartmentalized functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work describes the fabrication of nanospheres from a range of novel polyhydroxyalkanoates supplied by Monsanto, St Louis, Missouri, USA for the delivery of selected actives of both pharmaceutical and agricultural interest. Initial evaluation of established microsphere and nanosphere fabrication techniques resulted in the adoption and optimisation of a double sonication solvent evaporation method involving the synperonic surfactant F68. Nanospheres could be consistently generated with this method. Studies on the incorporation and release of the surrogate protein Bovine Serum Albumin V demonstrated that BSA could be loaded with between 10-40% w/w BSA without nanosphere destabilisation. BSA release from nanospheres into Hanks Balanced Salts Solution, pH 7.4, could be monitored for up to 28 days at 37°C. The incorporation and release of the Monsanto actives - the insecticide Admire® ({ 1-[(6-chloro-3-pyridinyl)methyIJ-N-nitro-2-imidazolidinimine}) and the plant growth hormone potassium salt Gibberellic acid (GA3K) from physico-chemically characterised polymer nanospheres was monitored for up to 37 days and 28 days respectively, at both 4°C and 23°C. Release data was subsequently fitted to established kinetic models to elaborate the possible mechanisms of release of actives from the nanospheres. The exposure of unloaded nanospheres to a range of physiological media and rural rainwater has been used to investigate the role polymer biodegradation by enzymatic and chemical means might play in the in vivo release of actives and agricultural applications. The potential environmental biodegradation of Monsanto polymers has been investigated using a composting study (International Standard ISO/FDIS 14855) in which the ultimate aerobic biodegradation of the polymers has been monitored by the analysis of evolved carbon dioxide. These studies demonstrated the potential of the polymers for use in the environment, for example as a pesticide delivery system.