4 resultados para n acetylglucosamine

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The CH2-linked glycoform of rheumatoid IgG is abnormal in having a reduced galactose content. This has been postulated to be a synthetic defect due to a decrease in the level of rheumatoid B cell galactosyltransferase. However, more recent work has indicated that agalactosylation may be common to chronic inflammatory diseases. In this work we have investigated the effect of oxygen free radicals (OFRs), which are generated by activated phagocytic cells at inflammatory sites, on the carbohydrate moiety of IgG. Radiolytically generated peroxy (ROO.) and hydroxyl radicals (OH.) but not superoxide anion radicals (O2.-) were found to destroy galactose on IgG. After OH. attack, this was associated with an increase in the availability of N-acetylglucosamine, possibly due to its presence as a terminal residue. These results suggest that the agalactosylation associated with chronic inflammation may not only be synthetic in nature, but may also be a consequence of post-synthetic degradation by OFRs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: Characterization of the representative protozoan Acanthamoeba polyphaga surface carbohydrate exposure by a novel combination of flow cytometry and ligand-receptor analysis. Methods and Results: Trophozoite and cyst morphological forms were exposed to a panel of FITC-lectins. Population fluorescence associated with FITC-lectin binding to acanthamoebal surface moieties was ascertained by flow cytometry. Increasing concentrations of representative FITC-lectins, saturation binding and determination of K d and relative Bmax values were employed to characterize carbohydrate residue exposure. FITC-lectins specific for N-acetylglucosamine, N-acetylgalactosamine and mannose/glucose were readily bound by trophozoite and cyst surfaces. Minor incremental increases in FITC-lectin concentration resulted in significant differences in surface fluorescence intensity and supported the calculation of ligand-binding determinants, Kd and relative B max, which gave a trophozoite and cyst rank order of lectin affinity and surface receptor presence. Conclusions: Trophozoites and cysts expose similar surface carbohydrate residues, foremost amongst which is N-acetylglucosamine, in varying orientation and availability. Significance and Impact of the Study: The outlined versatile combination of flow cytometry and ligand-receptor analysis allowed the characterization of surface carbohydrate exposure by protozoan morphological forms and in turn will support a valid comparison of carbohydrate exposure by other single-cell protozoa and eucaryotic microbes analysed in the same manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surface nature of Acanthamoeba trophozoites and cysts was investigated with respect to cell surface charge, hydrophobicity and surface carbohydrate composition. Particulate microelectrophoresis revealed a marked negative charge for both morphological forms, though less for cyst surfaces. Hydrophobicity was determined by adhesion to n-hexadecane and indicated a relatively low hydrophobic nature of both forms, though less so for cysts. Surface carbohydrate composition was studied by the use of fluorescent lectins and flow cytometry, using a ligand-receptor approach for further in depth analysis of binding of particular lectins. These studies showed trophozoite and cyst surfaces to be rich in N-acetylglucosamine, N-acteylneuraminic acid, mannose and glucose, with the addition of N-acetylgalactosamine on cysts. The importance of such surface properties was investigated with respect to phagocytosis of polystyrene latex microspheres, of different surface types and size. Investigations into the optimum conditions of uptake of beads indicated a preference for a medium devoid of nutrients, such as saline, though temperature was not a factor. An amoebal predilection for beads of lower charge and greater hydrophobicity was demonstrated. Furthermore, a preference for the largest bead size used (2.0 m) was observed. The influence of either Con A or mannose or glucose on bead association was apparently limited. The fate of foreign DNA ingested by Acanthamoeba appeared to indicate that such DNA was destroyed, as it could not be detected following extraction procedures and PCR amplification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flow cytometry and confocal microscopy were used to quantify and visualize FITC-lectin binding to cell-surface carbohydrate ligands of log and stationary phase acapsular and capsular Cryptococcus neoformans strains. Cell populations demonstrated marked avidity for terminal a-linked mannose and glucose specific FITC-Con A, mannose specific FITC-GNL, as well as N-acetylglucosamine specific FITC-WGA. Exposure to other FITC-lectins specific for mannose, fucose and N-acetylgalactosamine resulted in little cell-surface fluorescence. The nature of cell-surface carbohydrates was investigated further by measurement of the fluorescence from surfaces of log and stationary phase cell populations after exposing them to increasing concentrations of FITC-Con A and FITC-WGA. Cell fluorescence increased significantly with small increases in FITC-Con A and FITC-WGA concentrations attaining reproducible maxima. Measurements of this nature supported calculation of the lectin binding determinants EC 50, Hn, Fmax and relative Bmax values. EC50 values indicated that the yeast-cell surfaces had greatest affinity for FITC-WGA, however, relative Bmax values indicated that greater numbers of Con A binding sites were present on these same cell surfaces. Hn values suggested a co-operative lectin-carbohydrate ligand interaction. Imaging of FITC-Con A and FITC-WGA cell-surface fluorescence by confocal microscopy demonstrated marked localization of both lectins to cell surfaces associated with cell division and maturation, indicative of dynamic carbohydrate ligand exposure and masking. Some fluorescence was associated with entrapment of FITC-Con A by capsular components, but FITC-Con A and FITC-WGA readily penetrated the capsule matrix to bind to the same cell surfaces labelled in acapsular cells.