4 resultados para myocardium

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiovascular diseases (CVD) contributed to almost 30% of worldwide mortality; with heart failure being one class of CVD. One popular and widely available treatment for heart failure is the intra-aortic balloon pump (IABP). This heart assist device is used in counterpulsation to improve myocardial function by increasing coronary perfusion, and decreasing aortic end-diastolic pressure (i.e. the resistance to blood ejection from the heart). However, this device can only be used acutely, and patients are bedridden. The subject of this research is a novel heart assist treatment called the Chronic Intermittent Mechanical Support (CIMS) which was conceived to offer advantages of the IABP device chronically, whilst overcoming its disadvantages. The CIMS device comprises an implantable balloon pump, a percutaneous drive line, and a wearable driver console. The research here aims to determine the haemodynamic effect of balloon pump activation under in vitro conditions. A human mock circulatory loop (MCL) with systemic and coronary perfusion was constructed, capable of simulating various degrees of heart failure. Two prototypes of the CIMS balloon pump were made with varying stiffness. Several experimental factors (balloon inflation/deflation timing, Helium gas volume, arterial compliance, balloon pump stiffness and heart valve type) form the factorial design experiments. A simple modification to the MCL allowed flow visualisation experiments using video recording. Suitable statistical tests were used to analyse the data obtained from all experiments. Balloon inflation and deflation in the ascending aorta of the MCL yielded favourable results. The sudden balloon deflation caused the heart valve to open earlier, thus causing longer valve opening duration in a cardiac cycle. It was also found that pressure augmentation in diastole was significantly correlated with increased cardiac output and coronary flowrate. With an optimum combination (low arterial compliance and low balloon pump stiffness), systemic and coronary perfusions were increased by 18% and 21% respectively, while the aortic end-diastolic pressure (forward flow resistance) decreased by 17%. Consequently, the ratio of oxygen supply and demand to myocardium (endocardial viability ratio, EVR) increased between 33% and 75%. The increase was mostly attributed to diastolic augmentation rather than systolic unloading.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microvascular endothelial monolayers from mouse myocardium (MyEnd) cultured for up to 5 days postconfluency became increasingly resistant to various barrier-compromising stimuli such as low extracellular Ca2+ and treatment with the Ca2+ ionophore A23187 and with the actin depolymerising compound cytochalasin D. In contrast, microvascular endothelial monolayers from mouse lung microvessels (PulmEnd) remained sensitive to these conditions during the entire culture period which corresponds to the well-known in vivo sensitivity of the lung microvasculature to Ca2+depletion and cytochalasin D treatment. One molecular difference between pulmonary and myocardial endothelial cells was found to be transglutaminase 1 (TGase1) which is strongly expressed in myocardial endothelial cells but is absent from pulmonary endothelial cells. Resistance of MyEnd cells to barrier-breaking conditions correlated strongly with translocation of TGase1 to intercellular junctions. Simultaneous inhibition of intracellular and extracellular TGase activity by monodansylcadaverine (MDC) strongly weakened barrier properties of MyEnd monolayers, whereas inhibition of extracellular TGases by the membrane-impermeable active site-directed TGase inhibitor R281 did not reduce barrier properties. Weakening of barrier properties could be also induced in MyEnd cells by downregulation of TGase1 expression using RNAi-based gene silencing. These findings suggest that crosslinking activity of intracellular TGase1 at intercellular junctions may play a role in controlling barrier properties of endothelial monolayers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: This study sought to investigate the effect of endothelial dysfunction on the development of cardiac hypertrophy and fibrosis. BACKGROUND: Endothelial dysfunction accompanies cardiac hypertrophy and fibrosis, but its contribution to these conditions is unclear. Increased nicotinamide adenine dinucleotide phosphate oxidase-2 (NOX2) activation causes endothelial dysfunction. METHODS: Transgenic mice with endothelial-specific NOX2 overexpression (TG mice) and wild-type littermates received long-term angiotensin II (AngII) infusion (1.1 mg/kg/day, 2 weeks) to induce hypertrophy and fibrosis. RESULTS: TG mice had systolic hypertension and hypertrophy similar to those seen in wild-type mice but developed greater cardiac fibrosis and evidence of isolated left ventricular diastolic dysfunction (p < 0.05). TG myocardium had more inflammatory cells and VCAM-1-positive vessels than did wild-type myocardium after AngII treatment (both p < 0.05). TG microvascular endothelial cells (ECs) treated with AngII recruited 2-fold more leukocytes than did wild-type ECs in an in vitro adhesion assay (p < 0.05). However, inflammatory cell NOX2 per se was not essential for the profibrotic effects of AngII. TG showed a higher level of endothelial-mesenchymal transition (EMT) than did wild-type mice after AngII infusion. In cultured ECs treated with AngII, NOX2 enhanced EMT as assessed by the relative expression of fibroblast versus endothelial-specific markers. CONCLUSIONS: AngII-induced endothelial NOX2 activation has profound profibrotic effects in the heart in vivo that lead to a diastolic dysfunction phenotype. Endothelial NOX2 enhances EMT and has proinflammatory effects. This may be an important mechanism underlying cardiac fibrosis and diastolic dysfunction during increased renin-angiotensin activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent epidemiological evidences indicate that arsenic exposure increases risk of atherosclerosis, cardio vascular diseases (CVD) such as hypertension, atherosclerosis, coronary artery disease (CAD) and microangiopathies in addition to the serious global health concern related to its carcinogenic effects. In experiments on animals, acute and chronic exposure to arsenic directly correlates with cardiac tachyarrhythmia, and atherogenesis in a concentration and duration dependent manner. Moreover, the other effects of long-term arsenic exposure include induction of non-insulin dependent diabetes by mechanisms yet to be understood. On the other hand, there are controversial issues, gaps in knowledge, and future research priorities in accelerated incidences of CVD and mortalities in patients with HIV who are under long-termanti-retroviral therapy (ART). Although, both HIV infection itself and various components of ART initiate significant pathological alterations in the myocardium and the vasculature, simultaneous environmental exposure to arsenic which is more convincingly being recognized as a facilitator of HIV viral cycling in the infected immune cells, may contribute an additional layer of adversity in these patients. A high degree of suspicion and early screening may allow appropriate interventional guidelines to improve the quality of lives of those affected. In this mini-review which have been fortified with our own preliminary data, we will discuss some of the key current understating of chronic arsenic exposure, and its possible impact on the accelerated HIV/ART induced CVD. The review will conclude with notes on recent developments in mathematical modeling in this field that probabilistically forecast incidence prevalence as functions of aging and life style parameters, most of which vary with time themselves; this interdisciplinary approach provides a complementary kernel to conventional biology.