3 resultados para muscle injury

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hypochlorous acid (HOCl) concentration-dependently decreased ATPase activity and SH groups of pure Ca-ATPase from sarcoplasmic reticulum (SERCA) of rabbit skeletal muscle with IC(50) of 150 micromol/l and 6.6 micromol/l, respectively. This indicates that SH groups were not critical for impairment of Ca-ATPase activity. Pure Ca-ATPase activity was analysed individually with respect to both substrates, Ca(2+) and ATP. Concerning dependence of ATPase activity on HOCl (150 micromol/l) as a function of free Ca(2+) and ATP, V(max) of both dependences decreased significantly, while the affinities to individual substrates were not influenced, with the exception of the regulatory binding site of ATP. On increasing HOCl concentration, fluorescence of fluorescein-5-isothiocyanate (FITC) decreased, indicating binding of HOCl to nucleotide binding site of SERCA. A new fragment appeared at 75 kDa after HOCl oxidation of SR, indicating fragmentation of SERCA. Fragmentation may be associated with protein carbonyl formation. The density of protein carbonyl bands at 75 and 110 kDa increased concentration- and time-dependently. Trolox (250 micromol/l) recovered the Ca-ATPase activity decrease induced by HOCl, probably by changing conformational properties of the Ca-ATPase protein. Trolox inhibited FITC binding to SERCA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inadequate blood flow to an organ, ischaemia, may lead to both local and remote tissue injury characterized by oedema, increased microvascular permeability to protein and degradation of connective tissue components. This damage is probably caused by the accumulation and inappropriate activation of neutrophils which occurs when the tissue is reperfused. To test this hypothesis a number of in vitro models of the sequential stages of ischaemia/reperfusion injury were examined. Methods were initially developed to examine the adhesion of neutrophils to monolayers of a cultured endothelial cell line (ECV304) after periods of hypoxia and reoxygenation. Neutrophil migration in response to factors secreted by the treated endothelial cells was then assessed. The genesis of an inappropriate oxidative burst by the neutrophil upon exposure to endothelial chemoattractants and adhesion molecules was also measured. Finally to appraise how tissue function might be affected by endothelial cell hypoxia the contractility of vascular smooth muscle was examined. Neutrophil adhesion to ECV304 cells, which had been hypoxic for 4 hours and then reoxygenated for 30 minutes, was significantly increased. This response was probably initiated by reactive oxygen species (ROS) generated by the endothelial cells. Blockage of their production by allopurinol reduced the heightened adhesion. Similarly removal of ROS by superoxide dismutase or catalase also attenuated adhesion. ROS generation in turn caused the release of a soluble factor (s) which induced a conformational change on the neutrophil surface allowing it to bind to the intercellular adhesion molecule 1 (ICAM-1) on the endothelial cell. Soluble factor (s) from hypoxia/reoxygenated endothelial cells also had a powerful neutrophil chemoattractant ability. When neutrophils were exposed to both hypoxic/reoxygenated endothelial cells and the soluble factor (s) released by them a large oxidative burst was elicited. This response was greatest immediately after reoxygenation and one hour later was diminishing suggesting at least one of the components involved was labile. Analysis of the supernatant from hypoxic/reoxygenated endothelial cell cultures and studies using inhibitors of secretion suggested platelet activating factor (PAF) may be a major component in this overall sequence of events. Lesser roles for IL-8, TNF and LTB4 were also suggested. The secretory products from hypoxia/reoxygenated endothelial cells also affected smooth muscle contractility having an anti-vasoconstrictor or relaxation property, similar to that exerted by PAF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon monoxide (CO) has emerged as a vascular homeostatic molecule that prevents balloon angioplasty-induced stenosis via antiproliferative effects on vascular smooth muscle cells. The effects of CO on reendothelialization have not been evaluated.