9 resultados para multi-framing camera
em Aston University Research Archive
Resumo:
The electrical and optical characteristics of a cylindrical alumina insulator (94% Al203) have been measured under ultra-high vacuum (P < 10-8 mBar) conditions. A high-resolution CCD camera was used to make real-time optical recordings of DC prebreakdown luminescence from the ceramic, under conditions where DC current magnitudes were limited to less than 50μA. Two concentric metallized rings formed a pair of co-axial electrodes, on the end-face of the alumina tube; a third 'transparent' electrode was employed to study the effect of an orthogonal electric field upon the radial conduction processes within the metallized alumina specimen. The wavelength-spectra of the emitted light was quantified using a high-speed scanning monochromator and photo-multiplier tube detector. Concurrent electrical measurements were made alongside the recording of optical-emission images. An observed time-dependence of the photon-emission is correlated with a time-variation observed in the DC current-voltage characteristics of the alumina. Optical images were also recorded of pulsed-field surface-flashover events on the alumina ceramic. An intensified high-speed video technique provided 1ms frames of surface-flashover events, whilst 100ns frames were achieved using an ultra high-speed fast-framing camera. By coupling this fast-frame camera to a digital storage oscilloscope, it was possible to establish a temporal correlation between the application of a voltage-pulse to the ceramic and the evolution of photonic emissions from the subsequent surface-flashover event. The electro-optical DC prebreakdown characteristics of the alumina are discussed in terms of solid-state photon-emission processes, that are believed to arise from radiative electron-recombination at vacancy-defects and substitutional impurity centres within the surface-layers of the ceramic. The physical nature of vacancy-defects within an alumina dielectric is extensively explored, with a particular focus placed upon the trapped electron energy-levels that may be present at these defect centres. Finally, consideration is given to the practical application of alumina in the trigger-ceramic of a sealed triggered vacuum gap (TVG) switch. For this purpose, a physical model describing the initiation of electrical breakdown within the TVG regime is proposed, and is based upon the explosive destabilisation of trapped charge within the alumina ceramic, triggering the onset of surface-flashover along the insulator. In the main-gap prebreakdown phase, it is suggested that the electrical-breakdown of the TVG is initiated by the low-field 'stripping' of prebreakdown electrons from vacancy-defects in the ceramic under the influence of an orthogonal main-gap electric field.
Resumo:
In this paper we present increased adaptivity and robustness in distributed object tracking by multi-camera networks using a socio-economic mechanism for learning the vision graph. To build-up the vision graph autonomously within a distributed smart-camera network, we use an ant-colony inspired mechanism, which exchanges responsibility for tracking objects using Vickrey auctions. Employing the learnt vision graph allows the system to optimise its communication continuously. Since distributed smart camera networks are prone to uncertainties in individual cameras, such as failures or changes in extrinsic parameters, the vision graph should be sufficiently robust and adaptable during runtime to enable seamless tracking and optimised communication. To better reflect real smart-camera platforms and networks, we consider that communication and handover are not instantaneous, and that cameras may be added, removed or their properties changed during runtime. Using our dynamic socio-economic approach, the network is able to continue tracking objects well, despite all these uncertainties, and in some cases even with improved performance. This demonstrates the adaptivity and robustness of our approach.
Resumo:
This paper addresses the problem of obtaining 3d detailed reconstructions of human faces in real-time and with inexpensive hardware. We present an algorithm based on a monocular multi-spectral photometric-stereo setup. This system is known to capture high-detailed deforming 3d surfaces at high frame rates and without having to use any expensive hardware or synchronized light stage. However, the main challenge of such a setup is the calibration stage, which depends on the lights setup and how they interact with the specific material being captured, in this case, human faces. For this purpose we develop a self-calibration technique where the person being captured is asked to perform a rigid motion in front of the camera, maintaining a neutral expression. Rigidity constrains are then used to compute the head's motion with a structure-from-motion algorithm. Once the motion is obtained, a multi-view stereo algorithm reconstructs a coarse 3d model of the face. This coarse model is then used to estimate the lighting parameters with a stratified approach: In the first step we use a RANSAC search to identify purely diffuse points on the face and to simultaneously estimate this diffuse reflectance model. In the second step we apply non-linear optimization to fit a non-Lambertian reflectance model to the outliers of the previous step. The calibration procedure is validated with synthetic and real data.
Resumo:
We investigate the problem of obtaining a dense reconstruction in real-time, from a live video stream. In recent years, multi-view stereo (MVS) has received considerable attention and a number of methods have been proposed. However, most methods operate under the assumption of a relatively sparse set of still images as input and unlimited computation time. Video based MVS has received less attention despite the fact that video sequences offer significant benefits in terms of usability of MVS systems. In this paper we propose a novel video based MVS algorithm that is suitable for real-time, interactive 3d modeling with a hand-held camera. The key idea is a per-pixel, probabilistic depth estimation scheme that updates posterior depth distributions with every new frame. The current implementation is capable of updating 15 million distributions/s. We evaluate the proposed method against the state-of-the-art real-time MVS method and show improvement in terms of accuracy. © 2011 Elsevier B.V. All rights reserved.
Resumo:
In this paper we propose an approach based on self-interested autonomous cameras, which exchange responsibility for tracking objects in a market mechanism, in order to maximise their own utility. A novel ant-colony inspired mechanism is used to grow the vision graph during runtime, which may then be used to optimise communication between cameras. The key benefits of our completely decentralised approach are on the one hand generating the vision graph online which permits the addition and removal cameras to the network during runtime and on the other hand relying only on local information, increasing the robustness of the system. Since our market-based approach does not rely on a priori topology information, the need for any multi-camera calibration can be avoided. © 2011 IEEE.
Resumo:
To solve multi-objective problems, multiple reward signals are often scalarized into a single value and further processed using established single-objective problem solving techniques. While the field of multi-objective optimization has made many advances in applying scalarization techniques to obtain good solution trade-offs, the utility of applying these techniques in the multi-objective multi-agent learning domain has not yet been thoroughly investigated. Agents learn the value of their decisions by linearly scalarizing their reward signals at the local level, while acceptable system wide behaviour results. However, the non-linear relationship between weighting parameters of the scalarization function and the learned policy makes the discovery of system wide trade-offs time consuming. Our first contribution is a thorough analysis of well known scalarization schemes within the multi-objective multi-agent reinforcement learning setup. The analysed approaches intelligently explore the weight-space in order to find a wider range of system trade-offs. In our second contribution, we propose a novel adaptive weight algorithm which interacts with the underlying local multi-objective solvers and allows for a better coverage of the Pareto front. Our third contribution is the experimental validation of our approach by learning bi-objective policies in self-organising smart camera networks. We note that our algorithm (i) explores the objective space faster on many problem instances, (ii) obtained solutions that exhibit a larger hypervolume, while (iii) acquiring a greater spread in the objective space.
Resumo:
The seminal multiple view stereo benchmark evaluations from Middlebury and by Strecha et al. have played a major role in propelling the development of multi-view stereopsis methodology. Although seminal, these benchmark datasets are limited in scope with few reference scenes. Here, we try to take these works a step further by proposing a new multi-view stereo dataset, which is an order of magnitude larger in number of scenes and with a significant increase in diversity. Specifically, we propose a dataset containing 80 scenes of large variability. Each scene consists of 49 or 64 accurate camera positions and reference structured light scans, all acquired by a 6-axis industrial robot. To apply this dataset we propose an extension of the evaluation protocol from the Middlebury evaluation, reflecting the more complex geometry of some of our scenes. The proposed dataset is used to evaluate the state of the art multiview stereo algorithms of Tola et al., Campbell et al. and Furukawa et al. Hereby we demonstrate the usability of the dataset as well as gain insight into the workings and challenges of multi-view stereopsis. Through these experiments we empirically validate some of the central hypotheses of multi-view stereopsis, as well as determining and reaffirming some of the central challenges.
Resumo:
A new mesoscale simulation model for solids dissolution based on an computationally efficient and versatile digital modelling approach (DigiDiss) is considered and validated against analytical solutions and published experimental data for simple geometries. As the digital model is specifically designed to handle irregular shapes and complex multi-component structures, use of the model is explored for single crystals (sugars) and clusters. Single crystals and the cluster were first scanned using X-ray microtomography to obtain a digital version of their structures. The digitised particles and clusters were used as a structural input to digital simulation. The same particles were then dissolved in water and the dissolution process was recorded by a video camera and analysed yielding: the overall dissolution times and images of particle size and shape during the dissolution. The results demonstrate the coherence of simulation method to reproduce experimental behaviour, based on known chemical and diffusion properties of constituent phase. The paper discusses how further sophistications to the modelling approach will need to include other important effects such as complex disintegration effects (particle ejection, uncertainties in chemical properties). The nature of the digital modelling approach is well suited to for future implementation with high speed computation using hybrid conventional (CPU) and graphical processor (GPU) systems.
Resumo:
Acquiring 3D shape from images is a classic problem in Computer Vision occupying researchers for at least 20 years. Only recently however have these ideas matured enough to provide highly accurate results. We present a complete algorithm to reconstruct 3D objects from images using the stereo correspondence cue. The technique can be described as a pipeline of four basic building blocks: camera calibration, image segmentation, photo-consistency estimation from images, and surface extraction from photo-consistency. In this Chapter we will put more emphasis on the latter two: namely how to extract geometric information from a set of photographs without explicit camera visibility, and how to combine different geometry estimates in an optimal way. © 2010 Springer-Verlag Berlin Heidelberg.