4 resultados para multi-constraint assignment
em Aston University Research Archive
Resumo:
This paper formulates a logistics distribution problem as the multi-depot travelling salesman problem (MDTSP). The decision makers not only have to determine the travelling sequence of the salesman for delivering finished products from a warehouse or depot to a customer, but also need to determine which depot stores which type of products so that the total travelling distance is minimised. The MDTSP is similar to the combination of the travelling salesman and quadratic assignment problems. In this paper, the two individual hard problems or models are formulated first. Then, the problems are integrated together, that is, the MDTSP. The MDTSP is constructed as both integer nonlinear and linear programming models. After formulating the models, we verify the integrated models using commercial packages, and most importantly, investigate whether an iterative approach, that is, solving the individual models repeatedly, can generate an optimal solution to the MDTSP. Copyright © 2006 Inderscience Enterprises Ltd.
Resumo:
A nature inspired decentralised multi-agent algorithm is proposed to solve a problem of distributed task selection in which cities produce and store batches of different mail types. Agents must collect and process the mail batches, without a priori knowledge of the available mail at the cities or inter-agent communication. In order to process a different mail type than the previous one, agents must undergo a change-over during which it remains inactive. We propose a threshold based algorithm in order to maximise the overall efficiency (the average amount of mail collected). We show that memory, i.e. the possibility for agents to develop preferences for certain cities, not only leads to emergent cooperation between agents, but also to a significant increase in efficiency (above the theoretical upper limit for any memoryless algorithm), and we systematically investigate the influence of the various model parameters. Finally, we demonstrate the flexibility of the algorithm to changes in circumstances, and its excellent scalability.
Resumo:
Transportation service operators are witnessing a growing demand for bi-directional movement of goods. Given this, the following thesis considers an extension to the vehicle routing problem (VRP) known as the delivery and pickup transportation problem (DPP), where delivery and pickup demands may occupy the same route. The problem is formulated here as the vehicle routing problem with simultaneous delivery and pickup (VRPSDP), which requires the concurrent service of the demands at the customer location. This formulation provides the greatest opportunity for cost savings for both the service provider and recipient. The aims of this research are to propose a new theoretical design to solve the multi-objective VRPSDP, provide software support for the suggested design and validate the method through a set of experiments. A new real-life based multi-objective VRPSDP is studied here, which requires the minimisation of the often conflicting objectives: operated vehicle fleet size, total routing distance and the maximum variation between route distances (workload variation). The former two objectives are commonly encountered in the domain and the latter is introduced here because it is essential for real-life routing problems. The VRPSDP is defined as a hard combinatorial optimisation problem, therefore an approximation method, Simultaneous Delivery and Pickup method (SDPmethod) is proposed to solve it. The SDPmethod consists of three phases. The first phase constructs a set of diverse partial solutions, where one is expected to form part of the near-optimal solution. The second phase determines assignment possibilities for each sub-problem. The third phase solves the sub-problems using a parallel genetic algorithm. The suggested genetic algorithm is improved by the introduction of a set of tools: genetic operator switching mechanism via diversity thresholds, accuracy analysis tool and a new fitness evaluation mechanism. This three phase method is proposed to address the shortcoming that exists in the domain, where an initial solution is built only then to be completely dismantled and redesigned in the optimisation phase. In addition, a new routing heuristic, RouteAlg, is proposed to solve the VRPSDP sub-problem, the travelling salesman problem with simultaneous delivery and pickup (TSPSDP). The experimental studies are conducted using the well known benchmark Salhi and Nagy (1999) test problems, where the SDPmethod and RouteAlg solutions are compared with the prominent works in the VRPSDP domain. The SDPmethod has demonstrated to be an effective method for solving the multi-objective VRPSDP and the RouteAlg for the TSPSDP.
Resumo:
The popularity of online social media platforms provides an unprecedented opportunity to study real-world complex networks of interactions. However, releasing this data to researchers and the public comes at the cost of potentially exposing private and sensitive user information. It has been shown that a naive anonymization of a network by removing the identity of the nodes is not sufficient to preserve users’ privacy. In order to deal with malicious attacks, k -anonymity solutions have been proposed to partially obfuscate topological information that can be used to infer nodes’ identity. In this paper, we study the problem of ensuring k anonymity in time-varying graphs, i.e., graphs with a structure that changes over time, and multi-layer graphs, i.e., graphs with multiple types of links. More specifically, we examine the case in which the attacker has access to the degree of the nodes. The goal is to generate a new graph where, given the degree of a node in each (temporal) layer of the graph, such a node remains indistinguishable from other k-1 nodes in the graph. In order to achieve this, we find the optimal partitioning of the graph nodes such that the cost of anonymizing the degree information within each group is minimum. We show that this reduces to a special case of a Generalized Assignment Problem, and we propose a simple yet effective algorithm to solve it. Finally, we introduce an iterated linear programming approach to enforce the realizability of the anonymized degree sequences. The efficacy of the method is assessed through an extensive set of experiments on synthetic and real-world graphs.