101 resultados para multi-attribute decision making
em Aston University Research Archive
Resumo:
The evaluation and selection of industrial projects before investment decision is customarily done using marketing, technical and financial information. Subsequently, environmental impact assessment and social impact assessment are carried out mainly to satisfy the statutory agencies. Because of stricter environment regulations in developed and developing countries, quite often impact assessment suggests alternate sites, technologies, designs, and implementation methods as mitigating measures. This causes considerable delay to complete project feasibility analysis and selection as complete analysis requires to be taken up again and again till the statutory regulatory authority approves the project. Moreover, project analysis through above process often results sub-optimal project as financial analysis may eliminate better options, as more environment friendly alternative will always be cost intensive. In this circumstance, this study proposes a decision support system, which analyses projects with respect to market, technicalities, and social and environmental impact in an integrated framework using analytic hierarchy process, a multiple-attribute decision-making technique. This not only reduces duration of project evaluation and selection, but also helps select optimal project for the organization for sustainable development. The entire methodology has been applied to a cross-country oil pipeline project in India and its effectiveness has been demonstrated. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Petroleum pipelines are the nervous system of the oil industry, as this transports crude oil from sources to refineries and petroleum products from refineries to demand points. Therefore, the efficient operation of these pipelines determines the effectiveness of the entire business. Pipeline route selection plays a major role when designing an effective pipeline system, as the health of the pipeline depends on its terrain. The present practice of route selection for petroleum pipelines is governed by factors such as the shortest distance, constructability, minimal effects on the environment, and approachability. Although this reduces capital expenditure, it often proves to be uneconomical when life cycle costing is considered. This study presents a route selection model with the application of an Analytic Hierarchy Process (AHP), a multiple attribute decision making technique. AHP considers all the above factors along with the operability and maintainability factors interactively. This system has been demonstrated here through a case study of pipeline route selection, from an Indian perspective. A cost-benefit comparison of the shortest route (conventionally selected) and optimal route establishes the effectiveness of the model.
Resumo:
Supplier evaluation and selection problem has been studied extensively. Various decision making approaches have been proposed to tackle the problem. In contemporary supply chain management, the performance of potential suppliers is evaluated against multiple criteria rather than considering a single factor-cost. This paper reviews the literature of the multi-criteria decision making approaches for supplier evaluation and selection. Related articles appearing in the international journals from 2000 to 2008 are gathered and analyzed so that the following three questions can be answered: (i) Which approaches were prevalently applied? (ii) Which evaluating criteria were paid more attention to? (iii) Is there any inadequacy of the approaches? Based on the inadequacy, if any, some improvements and possible future work are recommended. This research not only provides evidence that the multi-criteria decision making approaches are better than the traditional cost-based approach, but also aids the researchers and decision makers in applying the approaches effectively.
Resumo:
Three novel solar thermal collector concepts derived from the Linear Fresnel Reflector (LFR) are developed and evaluated through a multi-criteria decision-making methodology, comprising the following techniques: Quality Function Deployment (QFD), the Analytical Hierarchy Process (AHP) and the Pugh selection matrix. Criteria are specified by technical and customer requirements gathered from Gujarat, India. The concepts are compared to a standard LFR for reference, and as a result, a novel 'Elevation Linear Fresnel Reflector' (ELFR) concept using elevating mirrors is selected. A detailed version of this concept is proposed and compared against two standard LFR configurations, one using constant and the other using variable horizontal mirror spacing. Annual performance is analysed for a typical meteorological year. Financial assessment is made through the construction of a prototype. The novel LFR has an annual optical efficiency of 49% and increases exergy by 13-23%. Operational hours above a target temperature of 300 C are increased by 9-24%. A 17% reduction in land usage is also achievable. However, the ELFR suffers from additional complexity and a 16-28% increase in capital cost. It is concluded that this novel design is particularly promising for industrial applications and locations with restricted land availability or high land costs. The decision analysis methodology adopted is considered to have a wider potential for applications in the fields of renewable energy and sustainable design. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Forests play a pivotal role in timber production, maintenance and development of biodiversity and in carbon sequestration and storage in the context of the Kyoto Protocol. Policy makers and forest experts therefore require reliable information on forest extent, type and change for management, planning and modeling purposes. It is becoming increasingly clear that such forest information is frequently inconsistent and unharmonised between countries and continents. This research paper presents a forest information portal that has been developed in line with the GEOSS and INSPIRE frameworks. The web portal provides access to forest resources data at a variety of spatial scales, from global through to regional and local, as well as providing analytical capabilities for monitoring and validating forest change. The system also allows for the utilisation of forest data and processing services within other thematic areas. The web portal has been developed using open standards to facilitate accessibility, interoperability and data transfer.
Resumo:
Guest editorial Ali Emrouznejad is a Senior Lecturer at the Aston Business School in Birmingham, UK. His areas of research interest include performance measurement and management, efficiency and productivity analysis as well as data mining. He has published widely in various international journals. He is an Associate Editor of IMA Journal of Management Mathematics and Guest Editor to several special issues of journals including Journal of Operational Research Society, Annals of Operations Research, Journal of Medical Systems, and International Journal of Energy Management Sector. He is in the editorial board of several international journals and co-founder of Performance Improvement Management Software. William Ho is a Senior Lecturer at the Aston University Business School. Before joining Aston in 2005, he had worked as a Research Associate in the Department of Industrial and Systems Engineering at the Hong Kong Polytechnic University. His research interests include supply chain management, production and operations management, and operations research. He has published extensively in various international journals like Computers & Operations Research, Engineering Applications of Artificial Intelligence, European Journal of Operational Research, Expert Systems with Applications, International Journal of Production Economics, International Journal of Production Research, Supply Chain Management: An International Journal, and so on. His first authored book was published in 2006. He is an Editorial Board member of the International Journal of Advanced Manufacturing Technology and an Associate Editor of the OR Insight Journal. Currently, he is a Scholar of the Advanced Institute of Management Research. Uses of frontier efficiency methodologies and multi-criteria decision making for performance measurement in the energy sector This special issue aims to focus on holistic, applied research on performance measurement in energy sector management and for publication of relevant applied research to bridge the gap between industry and academia. After a rigorous refereeing process, seven papers were included in this special issue. The volume opens with five data envelopment analysis (DEA)-based papers. Wu et al. apply the DEA-based Malmquist index to evaluate the changes in relative efficiency and the total factor productivity of coal-fired electricity generation of 30 Chinese administrative regions from 1999 to 2007. Factors considered in the model include fuel consumption, labor, capital, sulphur dioxide emissions, and electricity generated. The authors reveal that the east provinces were relatively and technically more efficient, whereas the west provinces had the highest growth rate in the period studied. Ioannis E. Tsolas applies the DEA approach to assess the performance of Greek fossil fuel-fired power stations taking undesirable outputs into consideration, such as carbon dioxide and sulphur dioxide emissions. In addition, the bootstrapping approach is deployed to address the uncertainty surrounding DEA point estimates, and provide bias-corrected estimations and confidence intervals for the point estimates. The author revealed from the sample that the non-lignite-fired stations are on an average more efficient than the lignite-fired stations. Maethee Mekaroonreung and Andrew L. Johnson compare the relative performance of three DEA-based measures, which estimate production frontiers and evaluate the relative efficiency of 113 US petroleum refineries while considering undesirable outputs. Three inputs (capital, energy consumption, and crude oil consumption), two desirable outputs (gasoline and distillate generation), and an undesirable output (toxic release) are considered in the DEA models. The authors discover that refineries in the Rocky Mountain region performed the best, and about 60 percent of oil refineries in the sample could improve their efficiencies further. H. Omrani, A. Azadeh, S. F. Ghaderi, and S. Abdollahzadeh presented an integrated approach, combining DEA, corrected ordinary least squares (COLS), and principal component analysis (PCA) methods, to calculate the relative efficiency scores of 26 Iranian electricity distribution units from 2003 to 2006. Specifically, both DEA and COLS are used to check three internal consistency conditions, whereas PCA is used to verify and validate the final ranking results of either DEA (consistency) or DEA-COLS (non-consistency). Three inputs (network length, transformer capacity, and number of employees) and two outputs (number of customers and total electricity sales) are considered in the model. Virendra Ajodhia applied three DEA-based models to evaluate the relative performance of 20 electricity distribution firms from the UK and the Netherlands. The first model is a traditional DEA model for analyzing cost-only efficiency. The second model includes (inverse) quality by modelling total customer minutes lost as an input data. The third model is based on the idea of using total social costs, including the firm’s private costs and the interruption costs incurred by consumers, as an input. Both energy-delivered and number of consumers are treated as the outputs in the models. After five DEA papers, Stelios Grafakos, Alexandros Flamos, Vlasis Oikonomou, and D. Zevgolis presented a multiple criteria analysis weighting approach to evaluate the energy and climate policy. The proposed approach is akin to the analytic hierarchy process, which consists of pairwise comparisons, consistency verification, and criteria prioritization. In the approach, stakeholders and experts in the energy policy field are incorporated in the evaluation process by providing an interactive mean with verbal, numerical, and visual representation of their preferences. A total of 14 evaluation criteria were considered and classified into four objectives, such as climate change mitigation, energy effectiveness, socioeconomic, and competitiveness and technology. Finally, Borge Hess applied the stochastic frontier analysis approach to analyze the impact of various business strategies, including acquisition, holding structures, and joint ventures, on a firm’s efficiency within a sample of 47 natural gas transmission pipelines in the USA from 1996 to 2005. The author finds that there were no significant changes in the firm’s efficiency by an acquisition, and there is a weak evidence for efficiency improvements caused by the new shareholder. Besides, the author discovers that parent companies appear not to influence a subsidiary’s efficiency positively. In addition, the analysis shows a negative impact of a joint venture on technical efficiency of the pipeline company. To conclude, we are grateful to all the authors for their contribution, and all the reviewers for their constructive comments, which made this special issue possible. We hope that this issue would contribute significantly to performance improvement of the energy sector.
Resumo:
Bioenergy schemes are multi-faceted and complex by nature, with many available raw material supplies and technical options and a diverse set of stakeholders holding a raft of conflicting opinions. To develop and operate a successful scheme there are many requirements that should be considered and satisfied. This paper provides a review of those academic works attempting to deal with problems arising within the bioenergy sector using multi-criteria decision-making (MCDM) methods. These methods are particularly suitable to bioenergy given its multi-faceted nature but could be equally relevant to other energy conversion technologies. Related articles appearing in the international journals from 2000 to 2010 are gathered and analysed so that the following two questions can be answered. (i) Which methods are the most popular? (ii) Which problems attract the most attention? The review finds that optimisation methods are most popular with methods choosing between few alternatives being used in 44% of reviewed papers and methods choosing between many alternatives being used in 28%. The most popular application area was to technology selection with 27% of reviewed papers followed by policy decisions with 18%. © 2012 Elsevier Ltd.
Resumo:
OBJECTIVE: To explore patients' and physicians' experiences of atrial fibrillation consultations and oral anticoagulation decision-making. DESIGN: Multi-perspective interpretative phenomenological analyses. METHODS: Participants included small homogeneous subgroups: AF patients who accepted (n=4), refused (n=4), or discontinued (n=3) warfarin, and four physician subgroups (n=4 each group): consultant cardiologists, consultant general physicians, general practitioners and cardiology registrars. Semi-structured interviews were conducted. Transcripts were analysed using multi-perspective IPA analyses to attend to individuals within subgroups and making comparisons within and between groups. RESULTS: Three themes represented patients' experiences: Positioning within the physician-patient dyad, Health-life balance, and Drug myths and fear of stroke. Physicians' accounts generated three themes: Mechanised metaphors and probabilities, Navigating toward the 'right' decision, and Negotiating systemic factors. CONCLUSIONS: This multi-perspective IPA design facilitated an understanding of the diagnostic consultation and treatment decision-making which foregrounded patients' and physicians' experiences. We drew on Habermas' theory of communicative action to recommend broadening the content within consultations and shifting the focus to patients' life contexts. Interventions including specialist multidisciplinary teams, flexible management in primary care, and multifaceted interventions for information provision may enable the creation of an environment that supports genuine patient involvement and participatory decision-making.
Resumo:
Group decision making is the study of identifying and selecting alternatives based on the values and preferences of the decision maker. Making a decision implies that there are several alternative choices to be considered. This paper uses the concept of Data Envelopment Analysis to introduce a new mathematical method for selecting the best alternative in a group decision making environment. The introduced model is a multi-objective function which is converted into a multi-objective linear programming model from which the optimal solution is obtained. A numerical example shows how the new model can be applied to rank the alternatives or to choose a subset of the most promising alternatives.
Resumo:
The goal of evidence-based medicine is to uniformly apply evidence gained from scientific research to aspects of clinical practice. In order to achieve this goal, new applications that integrate increasingly disparate health care information resources are required. Access to and provision of evidence must be seamlessly integrated with existing clinical workflow and evidence should be made available where it is most often required - at the point of care. In this paper we address these requirements and outline a concept-based framework that captures the context of a current patient-physician encounter by combining disease and patient-specific information into a logical query mechanism for retrieving relevant evidence from the Cochrane Library. Returned documents are organized by automatically extracting concepts from the evidence-based query to create meaningful clusters of documents which are presented in a manner appropriate for point of care support. The framework is currently being implemented as a prototype software agent that operates within the larger context of a multi-agent application for supporting workflow management of emergency pediatric asthma exacerbations. © 2008 Springer-Verlag Berlin Heidelberg.
Resumo:
This paper introduces a new mathematical method for improving the discrimination power of data envelopment analysis and to completely rank the efficient decision-making units (DMUs). Fuzzy concept is utilised. For this purpose, first all DMUs are evaluated with the CCR model. Thereafter, the resulted weights for each output are considered as fuzzy sets and are then converted to fuzzy numbers. The introduced model is a multi-objective linear model, endpoints of which are the highest and lowest of the weighted values. An added advantage of the model is its ability to handle the infeasibility situation sometimes faced by previously introduced models.
Resumo:
This research project has developed a novel decision support system using Geographical Information Systems and Multi Criteria Decision Analysis and used it to develop and evaluate energy-from-waste policy options. The system was validated by applying it to the UK administrative areas of Cornwall and Warwickshire. Different strategies have been defined by the size and number of the facilities, as well as the technology chosen. Using sensitivity on the results from the decision support system, it was found that key decision criteria included those affected by cost, energy efficiency, transport impacts and air/dioxin emissions. The conclusions of this work are that distributed small-scale energy-from-waste facilities score most highly overall and that scale is more important than technology design in determining overall policy impact. This project makes its primary contribution to energy-from-waste planning by its development of a Decision Support System that can be used to assist waste disposal authorities to identify preferred energy-from-waste options that have been tailored specifically to the socio-geographic characteristics of their jurisdictional areas. The project also highlights the potential of energy-from-waste policies that are seldom given enough attention to in the UK, namely those of a smaller-scale and distributed nature that often have technology designed specifically to cater for this market.
Resumo:
Research shows that consumers are readily embracing the Internet to buy products. This paper proposes that, in the case of grocery shopping, this may lead to sub-optimal decisions at the household level. Decisions online on what, where and from who to buy are normally taken by one individual. In the case of grocery shopping, decisions, however, need to be ‘vetted’ by ‘other’ individuals within the household. The ‘household wide related’ decisions influence how information technologies and systems for commerce should be designed and managed for optimum decision making. This paper argues, unlike previous research, that e-grocery retailing is failing to grow to its full potential not solely because of the ‘classical’ hazards and perceived risks associated with doing grocery shopping online but because e-grocery retailing strategy has failed to acknowledge the micro-household level specificities that affect decision making. Our exploratory research is based on empirical evidence which were collected through telephone interviews. We offer an insight into how e-grocery ‘fits’ and is ‘disrupted’ by the reality of day to day consumption decision making at the household level. Our main finding is to advocate a more role-neutral, multi-user and multi-technology approach to e-grocery shopping which re-defines the concept of the main shopper/decision maker thereby reconceptualising the ‘shopping logic’ for grocery products.
Resumo:
Designers of self-adaptive systems often formulate adaptive design decisions, making unrealistic or myopic assumptions about the system's requirements and environment. The decisions taken during this formulation are crucial for satisfying requirements. In environments which are characterized by uncertainty and dynamism, deviation from these assumptions is the norm and may trigger 'surprises'. Our method allows designers to make explicit links between the possible emergence of surprises, risks and design trade-offs. The method can be used to explore the design decisions for self-adaptive systems and choose among decisions that better fulfil (or rather partially fulfil) non-functional requirements and address their trade-offs. The analysis can also provide designers with valuable input for refining the adaptation decisions to balance, for example, resilience (i.e. Satisfiability of non-functional requirements and their trade-offs) and stability (i.e. Minimizing the frequency of adaptation). The objective is to provide designers of self adaptive systems with a basis for multi-dimensional what-if analysis to revise and improve the understanding of the environment and its effect on non-functional requirements and thereafter decision-making. We have applied the method to a wireless sensor network for flood prediction. The application shows that the method gives rise to questions that were not explicitly asked before at design-time and assists designers in the process of risk-aware, what-if and trade-off analysis.