4 resultados para mtDNA control region
em Aston University Research Archive
Resumo:
Our understanding of early spatial vision owes much to contrast masking and summation paradigms. In particular, the deep region of facilitation at low mask contrasts is thought to indicate a rapidly accelerating contrast transducer (eg a square-law or greater). In experiment 1, we tapped an early stage of this process by measuring monocular and binocular thresholds for patches of 1 cycle deg-1 sine-wave grating. Threshold ratios were around 1.7, implying a nearly linear transducer with an exponent around 1.3. With this form of transducer, two previous models (Legge, 1984 Vision Research 24 385 - 394; Meese et al, 2004 Perception 33 Supplement, 41) failed to fit the monocular, binocular, and dichoptic masking functions measured in experiment 2. However, a new model with two-stages of divisive gain control fits the data very well. Stage 1 incorporates nearly linear monocular transducers (to account for the high level of binocular summation and slight dichoptic facilitation), and monocular and interocular suppression (to fit the profound 42 Oral presentations: Spatial vision Thursday dichoptic masking). Stage 2 incorporates steeply accelerating transduction (to fit the deep regions of monocular and binocular facilitation), and binocular summation and suppression (to fit the monocular and binocular masking). With all model parameters fixed from the discrimination thresholds, we examined the slopes of the psychometric functions. The monocular and binocular slopes were steep (Weibull ߘ3-4) at very low mask contrasts and shallow (ߘ1.2) at all higher contrasts, as predicted by all three models. The dichoptic slopes were steep (ߘ3-4) at very low contrasts, and very steep (ß>5.5) at high contrasts (confirming Meese et al, loco cit.). A crucial new result was that intermediate dichoptic mask contrasts produced shallow slopes (ߘ2). Only the two-stage model predicted the observed pattern of slope variation, so providing good empirical support for a two-stage process of binocular contrast transduction. [Supported by EPSRC GR/S74515/01]
Resumo:
An investigation of behavioural patterns that form a basis for termite control in the Australasian region was undertaken using laboratory colonies of the subterranean termite Reticulitermes santonensis (Feytaud). The study attempted to build a picture of the behavioural elements of individuals in a colony and based on this, trophallaxis, aggression and cannibalism were investigated in detail. Preliminary study of food transmission showed that 'workers' played a major role in the distribution of food. It was found, that among factors responsible for release of trophallactic behaviour the presence of 'right odour' between participants was important. It also appeared that the role taken by individuals depended on whether they were hungry or fully fed. Antennal palpation was shown by donors and acceptors alike and this seemed to be excitatory in function. Introduction of aliens into nests elicited aggression and these aliens were often killed. Factors eliciting aggression were investigated and colony odour was found to be important. Further investigations revealed that development of colony odour was governed by genetical and environmental mechanisms. Termite response to injury and death was also governed by odour. In the case of injury either the fresh haemolymph from the wound or some component of the haemolymph evoked cannibalism. Necrophagic behaviour was found to be released by fatty acids found in the corpses. Finally, the response of colonies to nestmates carrying arsenic trioxide was investigated. It was found that living and freshly dead arsenic-carrying nestmates were treated like normal nestmates, resulting in high initial mortality. However, poisoned cadavers soon became repellant and were buried thus preventing further spread of the poison to the rest of the colony. This suggested that complete control of subterranean termites by arsenic trioxide is unlikely to be fully effective, especially in those species which are capable of developing secondary reproductives from survivors and thus rebuilding the community.
Resumo:
How are the image statistics of global image contrast computed? We answered this by using a contrast-matching task for checkerboard configurations of ‘battenberg’ micro-patterns where the contrasts and spatial spreads of interdigitated pairs of micro-patterns were adjusted independently. Test stimuli were 20 × 20 arrays with various sized cluster widths, matched to standard patterns of uniform contrast. When one of the test patterns contained a pattern with much higher contrast than the other, that determined global pattern contrast, as in a max() operation. Crucially, however, the full matching functions had a curious intermediate region where low contrast additions for one pattern to intermediate contrasts of the other caused a paradoxical reduction in perceived global contrast. None of the following models predicted this: RMS, energy, linear sum, max, Legge and Foley. However, a gain control model incorporating wide-field integration and suppression of nonlinear contrast responses predicted the results with no free parameters. This model was derived from experiments on summation of contrast at threshold, and masking and summation effects in dipper functions. Those experiments were also inconsistent with the failed models above. Thus, we conclude that our contrast gain control model (Meese & Summers, 2007) describes a fundamental operation in human contrast vision.
Resumo:
The medial pFC (mPFC) is frequently reported to play a central role in Theory of Mind (ToM). However, the contribution of this large cortical region in ToM is not well understood. Combining a novel behavioral task with fMRI, we sought to demonstrate functional divisions between dorsal and rostral mPFC. All conditions of the task required the representation of mental states (beliefs and desires). The level of demands on cognitive control (high vs. low) and the nature of the demands on reasoning (deductive vs. abductive) were varied orthogonally between conditions. Activation in dorsal mPFC was modulated by the need for control, whereas rostral mPFC was modulated by reasoning demands. These findings fit with previously suggested domain-general functions for different parts of mPFC and suggest that these functions are recruited selectively in the service of ToM.