5 resultados para motor unit

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A large negative spike potential, which is closely related to the onset of saccadic eyemovements, can be recorded from electrodes adjacent to the orbits. This potential, thepresaccadic spike potential, has often been regarded as an artefact related to eyemovement recordings and little work has been performed to establish its normal waveformand parameters. A positive spike potential, exactly coincident with the frontal negativespike, has also been recorded from electrodes positioned over the posterior scalp andthere has been some debate regarding any possible relationship between the twopotentials. The frontal spike potential has been associated with motor unit activity in theextraocular muscles prior to the saccade. This thesis investigates both the large anteriorand smaller posterior spike potentials and relates these recordings to the saccadic eyemovements associated with them. The anterior spike potential has been recorded from normal subjects to ascertain its normallatency and amplitude parameters for both horizontal and vertical saccades. A relationshipbetween saccade size and spike potential amplitude is described, the spike potentialamplitude reducing with smaller saccades. The potential amplitude also reduces withadvancing age. Studying the topographical distribution of the spike potential across thescalp shows the posterior spike activity may arise from potential spread of the larger frontalspike potential. Spike potential recordings from subjects with anomalous eye movements further implicate the extraocular muscles and their innervation in the generation of the spike potential. These recordings indicate that the spike potential may have some use as a clinical recording from patients with disease conditions affecting either their extraocular muscles or the innervational pathways to these muscles. Further recordings of the potential are necessary, however, to determine the exact nature of the changes which may occur with such conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many studies have accounted for whole body vibration effects in the fields of exercise physiology, sport and rehabilitation medicine. Generally, surface EMG is utilized to assess muscular activity during the treatment; however, large motion artifacts appear superimposed to the raw signal, making sEMG recording not suitable before any artifact filtering. Sharp notch filters, centered at vibration frequency and at its superior harmonics, have been used in previous studies, to remove the artifacts. [6, 10] However, to get rid of those artifacts some true EMG signal is lost. The purpose of this study was to reproduce the effect of motor-unit synchronization on a simulated surface EMG during vibratory stimulation. In addition, authors mean to evaluate the EMG power percentage in those bands in which are also typically located motion artifact components. Model characteristics were defined to take into account two main aspect: the muscle MUs discharge behavior and the triggering effects that appear during local vibratory stimulation. [7] Inter-pulse-interval, was characterized by a polimodal distribution related to the MU discharge frequency (IPI 55-80ms, σ=12ms) and to the correlation with the vibration period within the range of ±2 ms due to vibration stimulus. [1, 7] The signals were simulated using different stimulation frequencies from 30 to 70 Hz. The percentage of the total simulated EMG power within narrow bands centered at the stimulation frequency and its superior harmonics (± 1 Hz) resulted on average about 8% (± 2.85) of the total EMG power. However, the artifact in those bands may contain more than 40% of the total power of the total signal. [6] Our preliminary results suggest that the analysis of the muscular activity of muscle based on raw sEMG recordings and RMS evaluation, if not processed during vibratory stimulation may lead to a serious overestimation of muscular response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aims to reproduce the effect of motor-unit synchronization on surface EMG recordings during vibratory stimulation to highlight vibration evoked muscle activity. The authors intended to evaluate, through numerical simulations, the changes in surface EMG spectrum in muscles undergoing whole body vibration stimulation. In some specific bands, in fact, vibration induced motion artifacts are also typically present. In addition, authors meant to compare the simulated EMGs with respect to real recordings in order to discriminate the effect of synchronization of motor units discharges with vibration frequencies from motion artifacts. Computations were performed using a model derived from previous studies and modified to consider the effect of vibratory stimulus, the motor unit synchronization and the endplates-electrodes relative position on the EMG signal. Results revealed that, in particular conditions, synchronization of MUs' discharge generates visible peaks at stimulation frequency and its harmonics. However, only a part of the total power of surface EMGs might be enclosed within artifacts related bands (±1. Hz centered at the stimulation frequency and its superior harmonics) even in case of strong synchronization of motor units discharges with the vibratory stimulus. © 2013 Elsevier Ireland Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 19 channel Neuromagnetometer system in the Clinical Neurophysiology Unit at Aston University is a multi-channel system, unique in the United Kingdom. A bite bar head localisation and MRI co-registration strategy which enabled accurate and reproducible localisation of MEG data into cortical space was developed. This afforded the opportunity to study magnetic fields of the human cortex generated by stimulation of peripheral nerve, by stimulation of visceral sensory receptors and by those evoked through voluntary finger movement. Initially, a study of sensory-motor evoked data was performed in a healthy control population. The techniques developed were then applied to patients who were to undergo neurosurgical intervention for the treatment of epilepsy and I or space occupying lesions. This enabled both validation of the effective accuracy of source localisation using MEG as well as to determine the clinical value of MEG in presurgical assessment of functional localisation in human cortex. The studies in this thesis have demonstrated that MEG can repeatedly and reliably locate sources contained within a single gyrus and thus potentially differentiate between disparate gyral activation. This ability is critical in the clinical application of any functional imaging technique; which is yet to be fully validated by any other 'non-invasive' functional imaging methodology. The technique was also applied to the study of visceral sensory representation in the cortex which yielded important data about the multiple cortical representation of visceral sensory function.