8 resultados para motion systems
em Aston University Research Archive
Resumo:
When a visual stimulus is continuously moved behind a small stationary window, the window appears displaced in the direction of motion of the stimulus. In this study we showed that the magnitude of this illusion is dependent on (i) whether a perceptual or visuomotor task is used for judging the location of the window, (ii) the directional signature of the stimulus, and (iii) whether or not there is a significant delay between the end of the visual presentation and the initiation of the localization measure. Our stimulus was a drifting sinusoidal grating windowed in space by a stationary, two-dimensional, Gaussian envelope (σ=1 cycle of sinusoid). Localization measures were made following either a short (200 ms) or long (4.2 s) post-stimulus delay. The visuomotor localization error was up to three times greater than the perceptual error for a short delay. However, the visuomotor and perceptual localization measures were similar for a long delay. Our results provide evidence in support of the hypothesis that separate cortical pathways exist for visual perception and visually guided action and that delayed actions rely on stored perceptual information.
Resumo:
This thesis investigates the physical behaviour of solitons in wavelength division multiplexed (WDM) systems with dispersion management in a wide range of dispersion regimes. Background material is presented to show how solitons propagate in optical fibres, and key problems associated with real systems are outlined. Problems due to collision induced frequency shifts are calculated using numerical simulation, and these results compared with analytical techniques where possible. Different two-step dispersion regimes, as well as the special cases of uniform and exponentially profiled systems, are identified and investigated. In shallow profile, the constituent second-order dispersions in the system are always close to the average soliton value. It is shown that collision-induced frequency shifts in WDM soliton transmission systems are reduced with increasing dispersion management. New resonances in the collision dynamics are illustrated, due to the relative motion induced by the dispersion map. Consideration of third-order dispersion is shown to modify the effects of collision-induced timing jitter and third-order compensation investigated. In all cases pseudo-phase-matched four-wave mixing was found to be insignificant compared to collision induced frequency shift in causing deterioration of data. It is also demonstrated that all these effects are additive with that of Gordon-Haus jitter.
Resumo:
This work presents significant development into chaotic mixing induced through periodic boundaries and twisting flows. Three-dimensional closed and throughput domains are shown to exhibit chaotic motion under both time periodic and time independent boundary motions, A property is developed originating from a signature of chaos, sensitive dependence to initial conditions, which successfully quantifies the degree of disorder withjn the mixing systems presented and enables comparisons of the disorder throughout ranges of operating parameters, This work omits physical experimental results but presents significant computational investigation into chaotic systems using commercial computational fluid dynamics techniques. Physical experiments with chaotic mixing systems are, by their very nature, difficult to extract information beyond the recognition that disorder does, does not of partially occurs. The initial aim of this work is to observe whether it is possible to accurately simulate previously published physical experimental results through using commercial CFD techniques. This is shown to be possible for simple two-dimensional systems with time periodic wall movements. From this, and subsequent macro and microscopic observations of flow regimes, a simple explanation is developed for how boundary operating parameters affect the system disorder. Consider the classic two-dimensional rectangular cavity with time periodic velocity of the upper and lower walls, causing two opposing streamline motions. The degree of disorder within the system is related to the magnitude of displacement of individual particles within these opposing streamlines. The rationale is then employed in this work to develop and investigate more complex three-dimensional mixing systems that exhibit throughputs and time independence and are therefore more realistic and a significant advance towards designing chaotic mixers for process industries. Domains inducing chaotic motion through twisting flows are also briefly considered. This work concludes by offering possible advancements to the property developed to quantify disorder and suggestions of domains and associated boundary conditions that are expected to produce chaotic mixing.
Resumo:
This thesis introduces and develops a novel real-time predictive maintenance system to estimate the machine system parameters using the motion current signature. Recently, motion current signature analysis has been addressed as an alternative to the use of sensors for monitoring internal faults of a motor. A maintenance system based upon the analysis of motion current signature avoids the need for the implementation and maintenance of expensive motion sensing technology. By developing nonlinear dynamical analysis for motion current signature, the research described in this thesis implements a novel real-time predictive maintenance system for current and future manufacturing machine systems. A crucial concept underpinning this project is that the motion current signature contains information relating to the machine system parameters and that this information can be extracted using nonlinear mapping techniques, such as neural networks. Towards this end, a proof of concept procedure is performed, which substantiates this concept. A simulation model, TuneLearn, is developed to simulate the large amount of training data required by the neural network approach. Statistical validation and verification of the model is performed to ascertain confidence in the simulated motion current signature. Validation experiment concludes that, although, the simulation model generates a good macro-dynamical mapping of the motion current signature, it fails to accurately map the micro-dynamical structure due to the lack of knowledge regarding performance of higher order and nonlinear factors, such as backlash and compliance. Failure of the simulation model to determine the micro-dynamical structure suggests the presence of nonlinearity in the motion current signature. This motivated us to perform surrogate data testing for nonlinearity in the motion current signature. Results confirm the presence of nonlinearity in the motion current signature, thereby, motivating the use of nonlinear techniques for further analysis. Outcomes of the experiment show that nonlinear noise reduction combined with the linear reverse algorithm offers precise machine system parameter estimation using the motion current signature for the implementation of the real-time predictive maintenance system. Finally, a linear reverse algorithm, BJEST, is developed and applied to the motion current signature to estimate the machine system parameters.
Resumo:
Internally heated fluids are found across the nuclear fuel cycle. In certain situations the motion of the fluid is driven by the decay heat (i.e. corium melt pools in severe accidents, the shutdown of liquid metal reactors, molten salt and the passive control of light water reactors) as well as normal operation (i.e. intermediate waste storage and generation IV reactor designs). This can in the long-term affect reactor vessel integrity or lead to localized hot spots and accumulation of solid wastes that may prompt local increases in activity. Two approaches to the modeling of internally heated convection are presented here. These are based on numerical analysis using codes developed in-house and simulations using widely available computational fluid dynamics solvers. Open and closed fluid layers at around the transition between conduction and convection of various aspect ratios are considered. We determine optimum domain aspect ratio (1:7:7 up to 1:24:24 for open systems and 5:5:1, 1:10:10 and 1:20:20 for closed systems), mesh resolutions and turbulence models required to accurately and efficiently capture the convection structures that evolve when perturbing the conductive state of the fluid layer. Note that the open and closed fluid layers we study here are bounded by a conducting surface over an insulating surface. Conclusions will be drawn on the influence of the periodic boundary conditions on the flow patterns observed. We have also examined the stability of the nonlinear solutions that we found with the aim of identifying the bifurcation sequence of these solutions en route to turbulence.
Resumo:
Background - When a moving stimulus and a briefly flashed static stimulus are physically aligned in space the static stimulus is perceived as lagging behind the moving stimulus. This vastly replicated phenomenon is known as the Flash-Lag Effect (FLE). For the first time we employed biological motion as the moving stimulus, which is important for two reasons. Firstly, biological motion is processed by visual as well as somatosensory brain areas, which makes it a prime candidate for elucidating the interplay between the two systems with respect to the FLE. Secondly, discussions about the mechanisms of the FLE tend to recur to evolutionary arguments, while most studies employ highly artificial stimuli with constant velocities. Methodology/Principal Finding - Since biological motion is ecologically valid it follows complex patterns with changing velocity. We therefore compared biological to symbolic motion with the same acceleration profile. Our results with 16 observers revealed a qualitatively different pattern for biological compared to symbolic motion and this pattern was predicted by the characteristics of motor resonance: The amount of anticipatory processing of perceived actions based on the induced perspective and agency modulated the FLE. Conclusions/Significance - Our study provides first evidence for an FLE with non-linear motion in general and with biological motion in particular. Our results suggest that predictive coding within the sensorimotor system alone cannot explain the FLE. Our findings are compatible with visual prediction (Nijhawan, 2008) which assumes that extrapolated motion representations within the visual system generate the FLE. These representations are modulated by sudden visual input (e.g. offset signals) or by input from other systems (e.g. sensorimotor) that can boost or attenuate overshooting representations in accordance with biased neural competition (Desimone & Duncan, 1995).
Resumo:
The simulated classical dynamics of a small molecule exhibiting self-organizing behavior via a fast transition between two states is analyzed by calculation of the statistical complexity of the system. It is shown that the complexity of molecular descriptors such as atom coordinates and dihedral angles have different values before and after the transition. This provides a new tool to identify metastable states during molecular self-organization. The highly concerted collective motion of the molecule is revealed. Low-dimensional subspaces dynamics is found sensitive to the processes in the whole, high-dimensional phase space of the system. © 2004 Wiley Periodicals, Inc.
Resumo:
The computational mechanics approach has been applied to the orientational behavior of water molecules in a molecular dynamics simulated water–Na + system. The distinctively different statistical complexity of water molecules in the bulk and in the first solvation shell of the ion is demonstrated. It is shown that the molecules undergo more complex orientational motion when surrounded by other water molecules compared to those constrained by the electric field of the ion. However the spatial coordinates of the oxygen atom shows the opposite complexity behavior in that complexity is higher for the solvation shell molecules. New information about the dynamics of water molecules in the solvation shell is provided that is additional to that given by traditional methods of analysis.