2 resultados para mosquito habitats
em Aston University Research Archive
Resumo:
To create hydrologically sustainable wetlands, knowledge of the water use requirements of target habitats must be known. Extensive literature reviews highlighted a dearth of water-use data associated with large reedbeds and wet woodland habitats and in response to this field experiments were established. Field experiments to measure the water use rates of large reedbeds [ET(Reed)] were completed at three sites within the UK. Reference Crop Evapotranspiration [ETo] was calculated and mean monthly crop coefficients [Kc(Reed)] were developed. Kc(Reed) was less than 1 during the growing season (March to September), ranging between 0.22 in March and reaching a peak of 0.98 in June. The developed coefficients compare favourably with published data from other large reedbed systems and support the premise that the water use of large reedbeds is lower than that from small/fringe reedbeds. A methodology for determining water use rates from wet woodland habitats (UK NVC Code: W6) is presented, in addition to provisional ET(W6) rates for two sites in the UK. Reference Crop Evapotranspiration [ETo] data was used to develop Kc(W6) values which ranged between 0.89 (LV Lysimeter 1) and 1.64 (CH Lysimeter 2) for the period March to September. The data are comparable with relevant published data and show that the water use rates of wet woodland are higher than most other wetland habitats. Initial observations suggest that water use is related to the habitat’s establishment phase and the age and size of the canopy tree species. A theoretical case study presents crop coefficients associated with wetland habitats and provides an example water budget for the creation of a wetland comprising a mosaic of wetland habitats. The case study shows the critical role that the water use of wetland habitats plays within a water budget.
Resumo:
The project set out with two main aims. The first aim was to determine whether large scale multispectral aerial photography could be used to successfully survey and monitor urban wildlife habitats. The second objective was to investigate whether this data source could be used to predict population numbers of selected species expected to be found in a particular habitat type. Panchromatic, colour and colour infra-red, 1:2500 scale aerial photographs, taken in 1981 and 1984, were used. For the orderly extraction of information from the imagery, an urban wildlife habitat classification was devised. This was based on classifications already in use in urban environments by the Nature Conservancy Council. Pilot tests identified that the colour infra-red imagery provided the most accurate results about urban wildlife habitats in the study area of the Blackbrook Valley, Dudley. Both the 1981 and 1984 colour infra-red photographs were analysed and information was obtained about the type, extent and distribution of habitats. In order to investigate whether large scale aerial photographs could be used to predict likely animal population numbers in urban environments, it was decided to limit the investigation to the possible prediction of bird population numbers in Saltwells Local Nature Reserve. A good deal of research has already been completed into the development of models to predict breeding bird population numbers in woodland habitats. These models were analysed to determine whether they could be used successfully with data extracted from the aerial photographs. The projects concluded that 1:2500 scale colour infra-red photographs can provide very useful and very detailed information about the wildlife habitats in an urban area. Such imagery can also provide habitat area data to be used with population predictive models of woodland breeding birds. Using the aerial photographs, further investigations into the relationship between area of habitat and the breeding of individual bird species were inconclusive and need further research.