16 resultados para monoclonal-antibodies
em Aston University Research Archive
Resumo:
Antibodies reactive with native double stranded DNA are characteristic of the chronic inflammatory disease systemic lupus erythematosus. Native DNA is however, a poor immunogen and the mechanism of anti-DNA antibody production is incompletely understood. Modification of DNA can increase its immunogenicity and in inflammatory disease states reactive oxygen species produced from phagocytic cells have been shown to thus modify DNA. In this study, monoclonal antibodies produced spontaneously by two mice strains with lupus-like disease were used in a competition ELISA to monitor changes to DNA induced by reactive oxygen species. Different procedures for reactive oxygen species generation were found to cause distinct and characteristic changes to DNA involving modifications of base residues, the sugar-phosphate backbone and the gross conformational structure of double-stranded DNA. In view of this, it may be possible to use these antibodies further to probe DNA and infer the source and nature of the reactive oxygen species it has been exposed to, particularly in vivo.
Resumo:
The focus of this research was defined by a poorly characterised filtration train employed to clarify culture broth containing monoclonal antibodies secreted by GS-NSO cells: the filtration train blinded unpredictably and the ability of the positively charged filters to adsorb DNA from process material was unknown. To direct the development of an assay to quantify the ability of depth filters to adsorb DNA, the molecular weight of DNA from a large-scale, fed-batch, mammalian cell culture vessel was evaluated as process material passed through the initial stages of the purification scheme. High molecular weight DNA was substantially cleared from the broth after passage through a disc stack centrifuge and the remaining low molecular weight DNA was largely unaffected by passage through a series of depth filters and a sterilising grade membrane. Removal of high molecular weight DNA was shown to be coupled with clarification of the process stream. The DNA from cell culture supernatant showed a pattern of internucleosomal cleavage of chromatin when fractionated by electrophoresis but the presence of both necrotic and apoptotic cells throughout the fermentation meant that the origin of the fragmented DNA could not be unequivocally determined. An intercalating fluorochrome, PicoGreen, was elected for development of a suitable DNA assay because of its ability to respond to low molecular weight DNA. It was assessed for its ability to determine the concentration of DNA in clarified mammalian cell culture broths containing pertinent monoclonal antibodies. Fluorescent signal suppression was ameliorated by sample dilution or by performing the assay above the pI of secreted IgG. The source of fluorescence in clarified culture broth was validated by incubation with RNase A and DNase I. At least 89.0 % of fluorescence was attributable to nucleic acid and pre-digestion with RNase A was shown to be a requirement for successful quantification of DNA in such samples. Application of the fluorescence based assay resulted in characterisation of the physical parameters governing adsorption of DNA by various positively charged depth filters and membranes in test solutions and the DNA adsorption profile of the manufacturing scale filtration train. Buffers that reduced or neutralised the depth filter or membrane charge, and those that impeded hydrophobic interactions were shown to affect their operational capacity, demonstrating that DNA was adsorbed by a combination of electrostatic and hydrophobic interactions. Production-scale centrifugation of harvest broth containing therapeutic protein resulted in the reduction of total DNA in the process stream from 79.8 μg m1-1 to 9.3 μg m1-1 whereas the concentration of DNA in the supernatant of pre-and post-filtration samples had only marginally reduced DNA content: from 6.3 to 6.0 μg m1-1 respectively. Hence the filtration train was shown to ineffective in DNA removal. Historically, blinding of the depth filters had been unpredictable with data such as numbers of viable cells, non-viable cells, product titre, or process shape (batch, fed-batch, or draw and fill) failing to inform on the durability of depth filters in the harvest step. To investigate this, key fouling contaminants were identified by challenging depth filters with the same mass of one of the following: viable healthy cells, cells that had died by the process of apoptosis, and cells that had died through the process of necrosis. The pressure increase across a Cuno Zeta Plus 10SP depth filter was 2.8 and 16.5 times more sensitive to debris from apoptotic and necrotic cells respectively, when compared to viable cells. The condition of DNA released into the culture broth was assessed. Necrotic cells released predominantly high molecular weight DNA in contrast to apoptotic cells which released chiefly low molecular weight DNA. The blinding of the filters was found to be largely unaffected by variations in the particle size distribution of material in, and viscosity of, solutions with which they were challenged. The exceptional response of the depth filters to necrotic cells may suggest the cause of previously noted unpredictable filter blinding whereby a number of necrotic cells have a more significant impact on the life of a depth filter than a similar number of viable or apoptotic cells. In a final set of experiments the pressure drop caused by non-viable necrotic culture broths which had been treated with DNase I or benzonase was found to be smaller when compared to untreated broths: the abilities of the enzyme treated cultures to foul the depth filter were reduced by 70.4% and 75.4% respectively indicating the importance of DNA in the blinding of the depth filter studied.
Resumo:
Cells dying by apoptosis are normally cleared by phagocytes through mechanisms that can suppress inflammation and immunity. Molecules of the innate immune system, the pattern recognition receptors (PRRs), are able to interact not only with conserved structures on microbes (pathogen-associated molecular patterns, PAMPs) but also with ligands displayed by apoptotic cells. We reasoned that PRRs might therefore interact with structures on apoptotic cells-apoptotic cell-associated molecular patterns (ACAMPs)-that are analogous to PAMPs. Here we show that certain monoclonal antibodies raised against the prototypic PAMP, lipopolysaccharide (LPS), can crossreact with apoptotic cells. We demonstrate that one such antibody interacts with a constitutively expressed intracellular protein, laminin-binding protein, which translocates to the cell surface during apoptosis and can interact with cells expressing the prototypic PRR, mCD14 as well as with CD14-negative cells. Anti-LPS cross reactive epitopes on apoptotic cells colocalised with annexin V-and C1q-binding sites on vesicular regions of apoptotic cell surfaces and were released associated with apoptotic cell-derived microvesicles (MVs). These results confirm that apoptotic cells and microbes can interact with the immune system through common elements and suggest that anti-PAMP antibodies could be used strategically to characterise novel ACAMPs associated not only with apoptotic cells but also with derived MVs. © 2013 Macmillan Publishers Limited All rights reserved.
Resumo:
Rapid clearance of dying cells is a vital feature of apoptosis throughout development, tissue homeostasis and resolution of inflammation. The phagocytic removal of apoptotic cells is mediated by both professional and amateur phagocytes, armed with a series of pattern recognition receptors that participate in host defence and apoptotic cell clearance. CD14 is one such molecule. It is involved in apoptotic cell clearance (known to be immunosuppressive and anti-inflammatory) and binding of the pathogen-associated molecular pattern, lipopolysaccharides (a pro-inflammatory event). Thus CD14 is involved in the assembly of two distinct ligand-dependent macrophage responses. This project sought to characterise the involvement of the innate immune system, particularly CD14, in the removal of apoptotic cells. The role of non-myeloid CD14 was also considered and the data suggests that the expression of CD14 by phagocytes may define their professional status as phagocytes. To assess if differential CD14 ligation causes the ligand-dependent divergence in macrophage responses, a series of CD14 point mutants were used to map the binding of apoptotic cells and lipopolysaccharides. Monoclonal antibodies, 61D3 and MEM18, known to interfere with ligand-binding and responses, were also mapped. Data suggests that residue 11 of CD14, is key for the binding of 61D3 (but not MEM18), LPS and apoptotic cells, indicating lipopolysaccharides and apoptotic cells bind to similar residues. Furthermore using an NF-kB reporter, results show lipopolysaccharides but not apoptotic cells stimulate NF-kB. Taken together these data suggests ligand-dependent CD14 responses occur via a mechanism that occurs downstream of CD14 ligation but upstream of NF-?B activation. Alternatively apoptotic cell ligation of CD14 may not result in any signalling event, possibly by exclusion of TLR-4, suggesting that engulfment receptors, (e.g. TIM-4, BAI1 and Stablin-2) are required to mediate the uptake of apoptotic cells and the associated anti-inflammatory response.
Resumo:
Human CD81 (hCD81) protein has been recombinantly produced in the methylotrophic yeast Pichia pastoris. The purified protein, produced at a yield of 1.75 mg/L of culture, was shown to interact with Hepatitis C virus E2 glycoprotein. Immunofluorescent and flow cytometric staining of P. pastoris protoplasts with monoclonal antibodies specific for the second extracellular loop (EC2) of hCD81 confirmed the antigenicity of the recombinant molecule. Full-length hCD81 was solubilized with an array of detergents and subsequently characterized using circular dichroism (CD) and analytical ultracentrifugation. These biophysical techniques confirmed that the protein solution comprises a homogenous species possessing a highly-defined alpha-helical secondary structure. The predicted alpha-helical content of the protein from CD analysis (77.1%) fits remarkably well with what would be expected (75.2%) from knowledge of the protein sequence together with the data from the crystal structure of the second extracellular loop. This study represents the first biophysical characterization of a full-length recombinant tetraspanin, and opens the way for structure-activity analyses of this ubiquitous family of transmembrane proteins.
Resumo:
A wide range of molecules acting as apoptotic cell-associated ligands, phagocyte-associated receptors or soluble bridging molecules have been implicated within the complex sequential processes that result in phagocytosis and degradation of apoptotic cells. Intercellular adhesion molecule 3 (ICAM-3, also known as CD50), a human leukocyte-restricted immunoglobulin super-family (IgSF) member, has previously been implicated in apoptotic cell clearance, although its precise role in the clearance process is ill defined. The main objective of this work is to further characterise the function of ICAM-3 in the removal of apoptotic cells. Using a range of novel anti-ICAM-3 monoclonal antibodies (mAbs), including one (MA4) that blocks apoptotic cell clearance by macrophages, alongside apoptotic human leukocytes that are normal or deficient for ICAM-3, we demonstrate that ICAM-3 promotes a domain 1-2-dependent tethering interaction with phagocytes. Furthermore, we demonstrate an apoptosis-associated reduction in ICAM-3 that results from release of ICAM-3 within microparticles that potently attract macrophages to apoptotic cells. Taken together, these data suggest that apoptotic cell-derived microparticles bearing ICAM-3 promote macrophage chemoattraction to sites of leukocyte cell death and that ICAM-3 mediates subsequent cell corpse tethering to macrophages. The defined function of ICAM-3 in these processes and profound defect in chemotaxis noted to ICAM-3-deficient microparticles suggest that ICAM-3 may be an important adhesion molecule involved in chemotaxis to apoptotic human leukocytes. © 2012 Macmillan Publishers Limited All rights reserved.
Resumo:
This study concerns the nature of nitric oxide synthase (NOS) and the role of nitric oxide (NO) in the rat gastrointestinal tract. The major objectives were (i) to characterise NOS isoforms in the gastric glandular mucosa, (ii) to localise NOS isoforms in the rat gastric glandular mucosa, (iii) to investigate the role of NO in carbachol-stimulated gastric mucus secretion, (iv) to investigate the nature of NOS and small intestine. Immunoblotting was performed using polyclonal antisera raised against two peptides found in the rat brain NOS sequence and commercial monoclonal antibodies directed against neuronal and endothelial isoforms of NOS. A160kDa band was detected in brain and gastric mucosal samples with antibodies and antisera directed against neuronal NOS sequences, and a 140kDa band was detected in gastric mucosal samples using an anti-endothelial NOS antibody. An intense 160kDa neuronal NOS band was detected in a high-density fraction of gastric mucosal cells separated on a Percoll gradient. Detection of neuronal NOS by a carboxyl-terminal antiserum in samples of brain, but not of gastric mucosa, could be blocked by the peptide (20g/ml) against which the antibody was raised. After affinity purification, recognition of gastric mucosal NOS was blocked by peptide. Particulate neuronal NOS was found in the brain by immunoblotting while 94% of gastric mucosal enzyme was soluble. Gastric mucosal endothelial NOS was 95% particulate. 95% of NOS activity in the gastric mucosa was due to neuronal NOS. Paraformaldehyde- and acetone-fixed gastric mucosal sections were subject to immunocytochemistry using the above antibodies. Neuronal NOS was localised to the surface mucosal epithelial cells while endothelial NOS was associated with microvessels at the base of the mucosa and to larger vessels in the submucosa. Intragastric administration of carbachol or 16, 16-dimethyl prostaglandin E2 increased the thickness of the rat gastric mucus layer. The NOS inhibitor NG-nitro-L-arginine methyl ester dose-dependently, and selectively, prevented the stimulatory effect of carbachol. Ca2+-independent NOS activity in rat ileal, jejunal and colonic muscle was increased after LPS induction. Ca2+-dependent activity was not affected. Distribution of inducible NOS protein paralleled Ca2+ -independent activity. LPS treatment did not affect the content of neuronal NOS in colonic muscle.
Resumo:
Monoclonal and polyclonaI antibodies have been produced for use in immunological assays for the detection of Burkholderia pseudomallei and Burkholderia mallei. Monoclonal antibodies recognising a high molecular weight polysaccharide material found in some strains of both species have been shown to be effective in recognising B. pseudomallei and B. mallei and distinguishing them from other organisms. The high molecular weight polysaccharide material is thought to be the capsule of B. pseudomallei and B. mallei and may have important links with virulence. B. pseudomallei and B. mallei are known to be closely related, sharing many epitopes, but antigenic variation has been demonstrated within both the species. The lipopolysaccharide from strains of B. pseudomal/ei and B. mallei has been isolated and the silver stain profiles found to be visually very similar. A monoclonal antibody raised to B. mallei LPS has been found to recognise both B. mallei and B. pseudomallei strains. However, in a small number of B. pseudomallei strains a visually atypical LPS profile has been demonstrated. A monoclonal ant ibody rai sed against this atypical LPS showed no recognition of the typical LPS profile of either B. mallei or B. pseudomallei. This atypical LPS structure has not been reported and may be immunologically distinct from the typical LPS. Molecular biology and antibody engineering techniques have been used in an attempt to produce single-chain antibody fragments reactive to B. pseudomallei. Sequencing of one of the single-chain antibody fragments produced showed high homology with murine immunoglobulin genes, but none of the single-chain antibody fragments were found to be specific to B. pselldomallei.
Resumo:
Propionibacterium acnes forms part of the normal flora of the skin, oral cavity, large intestine and the external ear. Historically, P. acnes is considered to be of low virulence; however, in recent years it has been found as the aetiological agent in various pathologies including acne vulgaris, endophthalmitis, endocarditis, osteomyelitis, sarcoidosis, prosthetic hip infections and sciatica. It currently remains unclear why this normally harmless commensal can cause infection and contribute to a number of clinically significant conditions. This thesis has sought to investigate the phenotypic, genetic and antigenic properties of P.acnes strains isolated from sciatica patients undergoing microdiscectomy, normal skin, blood cultures, prosthetic hips and acne lesions. Isolates' phenotype was examined by determining their biotype by analytical profile index, antimicrobial susceptibility, virulence factor expression and serotype. A molecular typing method for P.acnes was developed using random amplification of polymorphic DNA (RAPD). Patient serum was used to screen P.acnes strains for antigens expressed in vivo and the chemical composition determined. The serodiagnostic potential and inflammatory properties of identified antigens were assessed. The optimised and reproducible RAPD protocol classified strains into three major clusters and was found to distinguish between the serotypes I and II for a large number of clinical isolates. Molecular typing by RAPD also enabled the identification of a genotype that did not react with the type I or II monoclonal antibodies and these strains may therefore constitute a previously undiscovered subspecies of P.acnes with a genetic background different from the type I and II serotypes. A major cell associated antigen produced by all strains was identified and characterised. A serological assay based on the antigen was used to measure IgG and IgM levels in serum from patients with acne, sciatica and controls. No difference in levels of antibodies was detected. Inflammatory properties of the antigen were measured by exposing murine macrophage-like cells and measuring the release of nitric oxide and tumour necrosis factor-alpha (TNF-α). Only TNF-α was elicited in response to the antigen. The phenotypic, genotypic and antigenic properties of this organism may provide a basis for future studies on P.acnes virulence and provide an insight into its mechanisms of pathogenesis.
Resumo:
Septic shock can occur as a result of Gram-negative or Gram-positive infection and involves a complex interaction between bacterial factors and the host immune system producing a systemic inflammatory state that may progress to multiple organ failure and death. Gram-positive bacteria are increasingly becoming more prevalent especially Staphylococcus epidermidis in association with indwelling devices. Lipopolysaccaride (LPS) is the key Gram-negative component involved in this process, but it is not clear which components of Gram-positive bacteria are responsible for progression of this often fatal disease. The aim of this thesis was to investigate the effect of bacterial components on the immune systems. Lipid S, a short chain form of lipoteichoic acid (LTA) found to be excreted from bacteria during growth in culture medium was examined along with other Gram-positive cell wall components: LTA, peptidoglycan (PG) and wall teichoic acids (WTA) and LPS from Gram-negative bacteria. Lipid S, LTA, PG and LPS but not WTA all stimulated murine macrophages and cell lines to produce significant amounts of NO, TNF-a, IL-6 and IL-1 and would induce fever and tissue damage seen in inflammatory diseases. Lipid S proved to be the most potent out of the Gram-positive samples tested. IgG antibodies in patients serum were found to bind to and cross react with lipid S and LTA. Anti-inflammatory antibiotics, platelet activating factor (PAF), PAF receptor antagonists and monoclonal antibodies (mAbs) directed to LTA, CD14 and toll-like receptors were utilised to modulate cytokine and NO production. In cell culture the anti-LTA and the anti-CD14 mAbs failed to markedly attenuate the production of NO, TNF-a, IL-6 or IL-1, the anti-TLR4 antibody did greatly inhibit the ability of LPS to stimulate cytokine production but not lipid S. The tetracyclines proved to be the most effective compounds, many were active at low concentrations and showed efficacy to inhibit both lipid S and LPS stimulated macrophages to produce NO.
Resumo:
Protein kinase C (PKC) is considered to be the major receptor for tumour promoting phorbol esters such as 12-0- tetradecanoylphorbol-13-acetate (TPA). These agents evoke a plethora of biological effects on cells in culture. The growth of A549 human lung carcinoma cells maintained in medium fortified with 10% foetal calf serum (FCS) is arrested for 6 days by TPA and other biologically active phorbol esters. In the work described in this thesis, the hypothesis was tested that modulation of PKC activity is closely related to events pivotal for cytostasis to occur. The effect of several phorbol esters, of newly synthesized analogues of diacylglycerols (DAG) and of bryostatins (bryos) on cell growth and ability to modulate activity of PKC has been investigated.Determination of the subcellular distribution of PKC following treatment of cells with TPA and partial enzyme purification by non-denaturing poly-acrylamide gel electrophoresis revealed translocation of enzyme activity from cytosoUc to paniculate fraction. Chronic exposure of cells to TPA resulted in a time and concentration dependent degradation of enzyme activity. Synthetic DAG and DAG analogues, unable to arrest the growth of cells at non-toxic concentrations, were neither able to affect subcellular PKC distribution nor compete effectively for phorbol ester binding sites at physiologically relevant concentrations. Bryos 1,2,4 and 5, natural products, possessing antineoplastic activity in mice, elicited transient arrest of A549 cell growth in vitro. They successfully competed for phorbol ester receptors in A549 cells with exquisite affinity and induced a shift in sub-cellular PKC distribution, though not to the same extent as PTA. Enzyme down-regulation resulted from prolonged exposure of cells to nanomolar concentrations of bryos. In vivo studies demonstrated that neither PDBu nor bryo 1 was able to inhibit A549 xenograft growth in athymic mice. The growth of A549 cell populations cultured under conditions of serum-deprivation was inhibited only transiently by biologically active phorbol esters. Fortification of serum-free medium with EGF or fetuin was able to partially restore sensitivity to maintained growth arrest by PTA. PKC translocation to the paniculate cellular fraction and subsequent enzyme down-regulation, induced by TPA, occurred in a manner similar to that observed in serum-supplemented cells. However, total PKC activity and cytosolic phorbol ester binding potential were greatly reduced in the serum-deprived cell population. Western blot analysis using monospecific monoclonal antibodies revealed the presence of PKC-a in both A549 cell populations, with significantly reduced protein levels in serum- deprived cells. PKC-/9 was not detected in either cell population.
Resumo:
The aims of this study were to examine the binding characteristics of the rat CGRP receptor and to further the classification of CGRP and amylin receptors in guinea-pig tissue preparations. Binding characteristics of CGRP were investigated on rat splenic, cerebellar and liver membrane preparations. Human-α-CGRP, rat-α-CGRP and the CGRP receptor analogues Tyrº -CGRPC28-37) and [Cys (ACM)2,7 ]-human CGRP and the CGRP receptor antagonist CGRPC8-37) were utilised in competitive radioligand binding experiments to identify possible CGRP receptor subtypes in these tissues. There appeared to be no significant differences between the rat CGRP receptors examined. A panel of monoclonal antibodies (Mabs) raised against CGRP were employed to investigate the structure-activity relationships of CGRP and its receptor. No differences between the tissue receptors were observed using this panel of Mabs. The effects of human-α, human-β, rat-α-CGRP, human and rat amylin and adrenomedullin(13-52) were examined on the spontaneously beating right atria and on electrically evoked twitch contractions of isolated guinea-pig ileum, vas deferens and left atria. All of the peptides caused concentration-dependent inhibition of twitch amplitude in the ileum and vas deferens. CGRP produced positive inotropic effects in the right and left atria and positive chronotropic effects in the right atria. A variety of CGRP receptor antagonists and putative amylin receptor antagonists were used to antagonise these effects. CGRP(8-37) is currently used as a basis for CGRP receptor classification (Dennis, et al., 1989). Based upon results obtained using CGRP(8-37) it has been shown that the guinea-pig ileum contains mainly CGRP 1 receptors and the vas deferens contain CGRP2 receptors. Amylin was shown to act at receptors distinct from those for CGRP and it is postulated that amylin has its own receptors in these preparations. Experiments using CGRP (19-37) and Tyrº -CGRP(28-37) indicate that human and rat CGRP act at distinct receptors in guinea-pig ileum and vas deferens. The amylin receptor antagonist amylin(8-37) and the putative antagonist AC187 provide evidence to suggest human and rat amylin also act at receptors able to distinguish between the two types of amylin.
Resumo:
The glycoprotein 130 (gp130) is a shared signal-transducing-membrane-associated receptor for several hematopoietic cytokines. Its activation is implicated in pain and in a variety of diseases via signaling of proinflammatory cytokines. These include interleukin-6 (IL-6) subfamily cytokines, many of which play important roles in the pathogenesis of diseases such as rheumatoid arthritis, Castleman's disease, and Kaposi's sarcoma. Several strategies have been developed to block gp130-receptor-mediated signaling. These include the application of monoclonal antibodies, the creation of mutant form(s) of the gp130 with increased binding affinity for such ligands as IL-6/sIL-6R complex, and the generation of antagonists by selective mutagenesis of the specific cytokine/gp130 receptor binding site(s). Other strategies include targeting gp130-mediated signaling pathways such as that involving signal transducer and activator of transcription-3. This review provides a summary of the latest research pertaining to the role of gp130 in the pathogenesis of inflammatory and other diseases in which the gp130 receptor is implicated. An overview of antagonists targeting the gp130 receptor is included with particular emphasis on their mechanism of action and their limitations and potential for therapeutic application.
Resumo:
Many cytokines have been implicated in the inflammatory pathways that characterize rheumatoid arthritis (RA) and related inflammatory diseases of the joints. These include members of the interleukin-6 (IL-6) family of cytokines, several of which have been detected in excess in the synovial fluid from RA patients. What makes the IL-6 group of cytokines a family is their common use of the glycoprotein 130 (gp130) receptor subunit, to which they bind with different affinities. Several strategies have been developed to block the pro-inflammatory activities of IL-6 subfamily cytokines. These include the application of monoclonal antibodies, the creation of mutant form(s) of the cytokine with enhanced binding affinity to gp130 receptor and the generation of antagonists by selective mutagenesis of the specific cytokine/gp130 receptor-binding site(s). The rationale for the use of anti-cytokine therapy in inflammatory joint diseases is based on evidence from studies in vitro and in vivo, which implicate major cytokines such as interleukin-1 (IL-1), tumour necrosis factor (TNF)-alpha and IL-6 in RA pathogenesis. In particular, IL-6 subfamily antagonists have a wide range of potential therapeutic and research applications. This review focuses on the role of some of the IL-6 subfamily cytokines in the pathogenesis of the inflammatory diseases of the joints (IJDs), such as RA. In addition, an overview of the recently developed antagonists will be discussed.