8 resultados para molybdenum carbonyl
em Aston University Research Archive
Resumo:
An efficient three-dimensional (3D) hybrid material of nitrogen-doped graphene sheets (N-RGO) supporting molybdenum disulfide (MoS2) nanoparticles with high-performance electrocatalytic activity for hydrogen evolution reaction (HER) is fabricated by using a facile hydrothermal route. Comprehensive microscopic and spectroscopic characterizations confirm the resulting hybrid material possesses a 3D crumpled few-layered graphene network structure decorated with MoS2 nanoparticles. Electrochemical characterization analysis reveals that the resulting hybrid material exhibits efficient electrocatalytic activity toward HER under acidic conditions with a low onset potential of 112 mV and a small Tafel slope of 44 mV per decade. The enhanced mechanism of electrocatalytic activity has been investigated in detail by controlling the elemental composition, electrical conductance and surface morphology of the 3D hybrid as well as Density Functional Theory (DFT) calculations. This demonstrates that the abundance of exposed active sulfur edge sites in the MoS2 and nitrogen active functional moieties in N-RGO are synergistically responsible for the catalytic activity, whilst the distinguished and coherent interface in MoS 2 /N-RGO facilitates the electron transfer during electrocatalysis. Our study gives insights into the physical/chemical mechanism of enhanced HER performance in MoS2/N-RGO hybrids and illustrates how to design and construct a 3D hybrid to maximize the catalytic efficiency.
Resumo:
The aim of this work is to improve some of the less desirable properties of bio-oil via the catalytic fast pyrolysis of sugarcane bagasse using a novel supported molybdenum carbide (20 wt.% MoC/AlO ) catalyst. Proximate and elemental analysis of the bagasse were carried out to determine the moisture, ash, carbon, hydrogen, nitrogen and oxygen content. The ground pellets were classified in sieves to a size range of 0.25-1 mm and were pyrolysed in a 300 g h fluidised bed reactor at 500 C. MoC/AlO replaced the sand in the fluidised bed reactor in different proportions (0 wt.%, 12 wt.%, 25 wt.% and 50 wt.%) to investigate the effect of this catalyst on the pyrolysis products. Bio-oil yield results showed that ground sugarcane bagasse pellets gave high organic yields in the bio-oil of 60.5 wt.% on dry feed with a total liquid yield of 73.1 wt.% on dry feed without catalyst. Increasing the catalyst proportions in the fluidised bed reduced bio-oil yields, significantly reduced sugars (as a-levoglucosan) concentration and increased furanics and phenolics concentration in the bio-oil. It was observed that the higher the concentration of the 20 wt.% MoC/AlO catalyst in the fluidised bed the lower the viscosity of the bio-oil. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Protein carbonyls are widely analysed as a measure of protein oxidation. Several different methods exist for their determination. A previous study had described orders of magnitude variance that existed when protein carbonyls were analysed in a single laboratory by ELISA using different commercial kits. We have further explored the potential causes of variance in carbonyl analysis in a ring study. A soluble protein fraction was prepared from rat liver and exposed to 0, 5 and 15 min of UV irradiation. Lyophilised preparations were distributed to six different laboratories that routinely undertook protein carbonyl analysis across Europe. ELISA and Western blotting techniques detected an increase in protein carbonyl formation between 0 and 5 min of UV irradiation irrespective of method used. After irradiation for 15 min, less oxidation was detected by half of the laboratories than after 5 min irradiation. Three of the four ELISA carbonyl results fell within 95% confidence intervals. Likely errors in calculating absolute carbonyl values may be attributed to differences in standardisation. Out of up to 88 proteins identified as containing carbonyl groups after tryptic cleavage of irradiated and control liver proteins, only seven were common in all three liver preparations. Lysine and arginine residues modified by carbonyls are likely to be resistant to tryptic proteolysis. Use of a cocktail of proteases may increase the recovery of oxidised peptides. In conclusion, standardisation is critical for carbonyl analysis and heavily oxidised proteins may not be effectively analysed by any existing technique.
Resumo:
Materials that combine photoluminescence, optical transparency and facile processability are of high importance in many applications. This article reports on the development of photoluminescent poly(methyl methacrylate) materials based on novel highly emissive anionic molybdenum cluster complex [{Mo6I8}(OTs)6]2– (where OTs– is the p-toluenesulfonate ion). The materials were obtained by both solution and bulk copolymerisation of methyl methacrylate and (dMDAEMA)2[{Mo6I8}(OTs)6], where dMDAEMA+ is the polymerisable cation [2-(methacryloyloxy)ethyl]dimethyl-dodecylammonium. Evaluation of the resultant hybrid materials showed that one could combine the excellent photoluminescent properties of the cluster complex with the transparency and processability of PMMA.
Resumo:
We demonstrate a Q-switched Raman fiber laser using molybdenum disulfide (MoS2) as a saturable absorber (SA). The SA is assembled by depositing a mechanically exfoliated MoS2 onto a fiber ferrule facet before it is matched with another clean ferrule via a connector. It is inserted in a Raman fiber laser cavity with a total cavity length of about 8km to generate a Q-switching pulse train operating at 1560.2 nm. A 7.7-km-long dispersion compensating fiber with 584 ps·nm?1km?1 of dispersion is used as a nonlinear gain medium. As the pump power is increased from 395mW to 422mW, the repetition rate of the Q-switching pulses can be increased from 132.7 to 137.4 kHz while the pulse width is concurrently decreased from 3.35μs to 3.03 μs. The maximum pulse energy of 54.3 nJ is obtained at the maximum pump power of 422mW. These results show that the mechanically exfoliated MoS2 SA has a great potential to be used for pulse generation in Raman fiber laser systems.
Resumo:
This article describes the synthesis, structures and systematic study of the spectroscopic and redox properties of a series of octahedral molybdenum metal cluster complexes with aromatic sulfonate ligands (nBu4N)2[{Mo6X8}(OTs)6] and (nBu4N)2[{Mo6X8}(PhSO3)6] (where X- is Cl-, Br- or I-; OTs- is p-toluenesulfonate and PhSO3 - is benzenesulfonate). All the complexes demonstrated photoluminescence in the red region and an ability to generate singlet oxygen. Notably, the highest quantum yields (>0.6) and narrowest emission bands were found for complexes with a {Mo6I8}4+ cluster core. Moreover, cyclic voltammetric studies revealed that (nBu4N)2[{Mo6X8}(OTs)6] and (nBu4N)2[{Mo6X8}(PhSO3)6] confer enhanced stability towards electrochemical oxidation relative to corresponding starting complexes (nBu4N)2[{Mo6X8}X6].
Resumo:
Materials that combine photoluminescence, optical transparency and facile processability are of high importance in many applications. This article reports on the development of photoluminescent poly(methyl methacrylate) materials based on novel highly emissive anionic molybdenum cluster complex [{Mo6I8}(OTs)6]2- (where OTs- is the p-toluenesulfonate ion). The materials were obtained by both solution and bulk copolymerisation of methyl methacrylate and (dMDAEMA)2[{Mo6I8}(OTs)6], where dMDAEMA+ is the polymerisable cation [2-(methacryloyloxy)ethyl]dimethyl-dodecylammonium. Evaluation of the resultant hybrid materials showed that one could combine the excellent photoluminescent properties of the cluster complex with the transparency and processability of PMMA.