6 resultados para molecular engineering
em Aston University Research Archive
Resumo:
Amino acid substitution plays a vital role in both the molecular engineering of proteins and analysis of structure-activity relationships. High-throughput substitution is achieved by codon randomisation, which generates a library of mutants (a randomised gene library) in a single experiment. For full randomisation, key codons are typically replaced with NNN (64 sequences) or NNG CorT (32 sequences). This obligates cloning of redundant codons alongside those required to encode the 20 amino acids. As the number of randomised codons increases, there is therefore a progressive loss of randomisation efficiency; the number of genes required per protein rises exponentially. The redundant codons cause amino acids to be represented unevenly; for example, methionine is encoded just once within NNN, whilst arginine is encoded six times. Finally, the organisation of the genetic code makes it impossible to encode functional subsets of amino acids (e.g. polar residues only) in a single experiment. Here, we present a novel solution to randomisation where genetic redundancy is eliminated; the number of different genes equals the number of encoded proteins, regardless of codon number. There is no inherent amino acid bias and any required subset of amino acids may be encoded in one experiment. This generic approach should be widely applicable in studies involving randomisation of proteins. © 2003 Elsevier Ltd. All rights reserved.
Resumo:
Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)1-(x+y), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Qmax = 28 Å-1) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and PO bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials. © 2013 The Owner Societies.
Resumo:
The preparation and characterisation of novel biodegradable polymer fibres for application in tissue engineering and drug delivery are reported. Poly(e-caprolactone) (PCL) fibres were produced by wet spinning from solutions in acetone under low shear (gravity flow) conditions. The tensile strength and stiffness of as-spun fibres were highly dependent on the concentration of the spinning solution. Use of a 6% w/v solution resulted in fibres having strength and stiffness of 1.8 MPa and 0.01 GPa respectively, whereas these values increased to 9.9 MPa and 0.1 GPa when fibres were produced from 20% w/v solutions. Cold drawing to an extension of 500% resulted in further increases in fibre strength (up to 50 MPa) and stiffness (0.3 GPa). Hot drawing to 500% further increased the fibre strength (up to 81 MPa) and stiffness (0.5 GPa). The surface morphology of as-spun fibres was modified, to yield a directional grooved pattern by drying in contact with a mandrel having a machined topography characterised by a peak-peak separation of 91 mm and a peak height of 30 mm. Differential scanning calorimetery (DSC) analysis of as-spun fibres revealed the characteristic melting point of PCL at around 58°C and a % crystallinity of approximately 60%. The biocompatibility of as-spun fibres was assessed using cell culture. The number of attached 3T3 Swiss mouse fibroblasts, C2C12 mouse myoblasts and human umbilical vein endothelial cells (HUVECs) on as-spun, 500% cold drawn, and gelatin coated PCL fibres were observed. The results showed that the fibres promoted cell proliferation for 9 days in cell culture and was slightly lower than on tissue culture plastic. The morphology of all cell lines was assessed on the various PCL fibres using scanning electron microscopy. The cell function of HUVECs growing on the as-spun PCL fibres was evaluated. The ability HUVECs to induce an immune response when stimulated with lipopolysaccaride (LPS) and thereby to increase the amount of cell surface receptors was assessed by flow cytometry and reverse transcription-polymerase chain reaction (RT-PCR). The results showed that PCL fibres did not inhibit this function compared to TCP. As-spun PCL fibres were loaded with 1 % ovine albumin (OVA) powder, 1% OVA nanoparticles and 5% OVA nanoparticles by weight and the protein release was assessed in vitro. PCL fibres loaded with 1 % OVA powder released 70%, 1% OVA nanoparticle released 60% and the 5% OVA nanoparticle released 25% of their protein content over 28 days. These release figures did not alter when the fibres were subjected to lipase enzymatic degradation. The OVA released was examined for structural integrity by SDS-PAGE. This showed that the protein molecular weight was not altered after incorporation into the fibres. The bioactivity of progesterone was assessed following incorporation into PCL fibres. Results showed that the progesterone released had a pronounced effect on MCF-7 breast epithelial cells, inhibiting their proliferation. The PCL fibres display high fibre compliance, a potential for controlling the fibre surface architecture to promote contact guidance effects, favorable proliferation rate of fibroblasts, myoblasts and HUVECs and the ability to release pharmaceuticals. These properties recommended their use for 3-D scaffold production in soft tissue engineering and the fibres could also be exploited for controlled presentation and release of biopharmaceuticals such as growth factors.
Resumo:
This research primarily focused on identifying the formulation parameters which control the efficacy of liposomes as delivery systems to enhance the delivery of poorly soluble drugs. Preliminary studies focused on the drug loading of ibuprofen within vesicle systems. Initially both liposomal and niosomal formulations were screened for their drug-loading capacity: liposomal systems were shown to offer significantly higher ibuprofen loading and thereafter lipid based systems were further investigated. Given the key role cholesterol is known to play within the stability of bilayer vesicles. the optimum cholesterol content in terms of drug loading and release of poorly soluble drugs was then investigated. From these studies a concentration of 11 total molar % of cholesterol was used as a benchmark for all further formulations. Investigating the effect of liposomc composition on several low solubility drugs, drug loading was shown to be enhanced by adopting longer chain length lipids. cationic lipids and. decreasing drug molecular weight. Drug release was increased by using cationic lipids and lower molecular weight of drug; conversely, a reduction was noted when employing longer chain lipids thus supporting the rational of longer chain lipids producing more stable liposomes, a theory also supported by results obtained via Langmuir studies· although it was revealed that stability is also dependent on geometric features associated with the lipid chain moiety. Interestingly, reduction in drug loading appeared to be induced when symmetrical phospholipids were substituted for lipids constituting asymmetrical alkyl chain groups thus further highlighting the importance of lipid geometry. Combining a symmetrical lipid with an asymmetrical derivative enhanced encapsulation of a hydrophobic drug while reducing that of another suggesting the importance of drug characteristics. Phosphatidylcholine liposornes could successfully be prepared (and visualised using transmission electron microscopy) from fatty alcohols therefore offering an alternative liposomal stabiliser to cholesterol. Results obtained revealed that liposomes containing tetradecanol within their formulation shares similar vesicle size, drug encapsulation, surface charge. and toxicity profiles as liposomes formulated with cholesterol, however the tetradecanol preparation appeared to release considerably more drug during stability studies. Langmuir monolayer studies revealed that the condensing influence by tetradecanol is less than compared with cholesterol suggesting that this reduced intercalation by the former could explain why the tetradecanol formulation released more drug compared with cholesterol formulations. Environmental scanning electron microscopy (ESEM) was used to analyse the morphology and stability of liposomes. These investigations indicated that the presence of drugs within the liposomal bilayer were able to enhance the stability of the bilayers against collapse under reduced hydration conditions. In addition the presence of charged lipids within the formulation under reduced hydration conditions compared with its neutral counterpart. However the applicability of using ESEM as a new method to investigate liposome stability appears less valid than first hoped since the results are often open to varied interpretation and do not provide a robust set of data to support conclusions in some cases.
Resumo:
In recent years there has been growing interest in the use of dimethyl ether (DME) as an alternative fuel. In this study, the adsorption of DME on molecular sieves 4Å (Mol4A) and 5Å (Mol5A) has been experimentally investigated using the volumetric adsorption method. Data on the adsorption isotherms, heats of adsorption, and adsorption kinetic have been obtained and used to draw conclusions and compare the performance of the two adsorbents. Within the conditions considered, the adsorption capacity of Mol5A was found to be around eight times higher than the capacity of Mol4A. Low temperature adsorption and thermal pre-treatment of the adsorbents in vacuum were observed to be favourable for increased adsorption capacity. The adsorption isotherms for both adsorbent were fitted to the Freundlich model and the corresponding model parameters are proposed. The adsorption kinetic analysis suggest that the DME adsorption on Mol5A is controlled by intracrystalline diffusion resistance, while on Mol4A it is mainly controlled by surface layering resistance with the diffusion only taking place at the start of adsorption and for a very limited short time. The heats of adsorption were calculated by a calorimetric method based on direct temperature measurements inside the adsorption cell. Isosteric heats, calculated by the thermodynamic approach (Clasius-Clapeyron equation), have consistently shown lower values. The maximum heat of adsorption was found to be 25.9kJmol-1 and 20.1kJmol-1 on Mol4A and Mol5A, respectively; thus indicating a physisorption type of interactions. © 2014 Elsevier B.V.
Resumo:
Cellular peptide vaccines contain T-cell epitopes. The main prerequisite for a peptide to act as a T-cell epitope is that it binds to a major histocompatibility complex (MHC) protein. Peptide MHC binder identification is an extremely costly experimental challenge since human MHCs, named human leukocyte antigen, are highly polymorphic and polygenic. Here we present EpiDOCK, the first structure-based server for MHC class II binding prediction. EpiDOCK predicts binding to the 23 most frequent human, MHC class II proteins. It identifies 90% of true binders and 76% of true non-binders, with an overall accuracy of 83%. EpiDOCK is freely accessible at http://epidock.ddg-pharmfac. net. © The Author 2013. Published by Oxford University Press. All rights reserved.