5 resultados para models (people)
em Aston University Research Archive
Resumo:
There have been two main approaches to feature detection in human and computer vision - based either on the luminance distribution and its spatial derivatives, or on the spatial distribution of local contrast energy. Thus, bars and edges might arise from peaks of luminance and luminance gradient respectively, or bars and edges might be found at peaks of local energy, where local phases are aligned across spatial frequency. This basic issue of definition is important because it guides more detailed models and interpretations of early vision. Which approach better describes the perceived positions of features in images? We used the class of 1-D images defined by Morrone and Burr in which the amplitude spectrum is that of a (partially blurred) square-wave and all Fourier components have a common phase. Observers used a cursor to mark where bars and edges were seen for different test phases (Experiment 1) or judged the spatial alignment of contours that had different phases (e.g. 0 degrees and 45 degrees ; Experiment 2). The feature positions defined by both tasks shifted systematically to the left or right according to the sign of the phase offset, increasing with the degree of blur. These shifts were well predicted by the location of luminance peaks (bars) and gradient peaks (edges), but not by energy peaks which (by design) predicted no shift at all. These results encourage models based on a Gaussian-derivative framework, but do not support the idea that human vision uses points of phase alignment to find local, first-order features. Nevertheless, we argue that both approaches are presently incomplete and a better understanding of early vision may combine insights from both. (C)2004 Elsevier Ltd. All rights reserved.
Resumo:
The second edition of the workshop Models@run.time was co-located with the ACM/IEEE 10th International Conference on Model Driven Engineering Languages and Systems. The workshop took place in the lively city of Nashville, USA, on the 2nd of October, 2007. The workshop was organised by Nelly Bencomo, Robert France, and Gordon Blair and was attended by at least 25 people from 7 countries. This summary gives an overview of the presentations and lively discussions that took place during the workshop. © 2008 Springer-Verlag Berlin Heidelberg.
Resumo:
The 5th edition of the workshop Models@run.time was held at the 13th International Conference MODELS. The workshop took place in the exciting city of Oslo, Norway, on the 5th of October 2010. The workshop was organised by Nelly Bencomo, Gordon Blair, Franck Fleurey, and Cédric Jeanneret. It was attended by at least 33 people from more than 11 countries. In this summary we present a synopsis of the presentations and discussions that took place during the workshop. © 2011 Springer-Verlag Berlin Heidelberg.
Resumo:
The 4th edition of the workshop Models@run.time was held at the 12th International Conference on Model Driven Engineering Languages and Systems (MODELS). The workshop took place in the city of Denver, Colorado, USA, on the 5th of October 2009. The workshop was organised by Nelly Bencomo, Robert France, Gordon Blair, Freddy Muñoz, and Cédric Jeanneret. It was attended by at least 45 people from more than 10 countries. In this summary we present a synopsis of the presentations and discussions that took place during the 4th International Workshop on Models@run.time. © Springer-Verlag Berlin Heidelberg 2010.
Resumo:
The third edition of the workshop Models@run.time was held at the ACM/IEEE 11th International Conference on Model Driven Engineering Languages and Systems (MODELS). The workshop took place in the beautiful city of Toulouse, France, on the 30th of October, 2008. The workshop was organised by Nelly Bencomo, Robert France, Gordon Blair, Freddy Muñoz, and Cèdric Jeanneret.It was attended by at least 44 people from more than 10 countries. In this summary we present an overview of the presentations and fruitful discussions that took place during the 3rd edition of the workshop Models@run.time.