26 resultados para mobile phase composition
em Aston University Research Archive
Resumo:
Three British bituminous coals, (Gedling, Cresswell, and Cortonwood Silkstone) were selected for study. Procedures were developed, using phase transfer catalysts (PTC's), to degrade the solvent insoluble fractions of the coals. PTC's are of interest because they have the potential to bring about selective high conversion reactions, under mild conditions, (often in the past, severe reaction conditions have had to be used to degrade the coals, this in turn resulted in the loss of much of the structural information). We have applied a variety of physical and chemical techniques to maximise the amount of structural information, these include, elemental analysis, 1H-NMR, 13C-CPMAS-NMR, GPC, GC-MS, FTIR spectroscopy, DRIFT spectroscopy, and gas adsorption measurements. The main conclusions from the work are listed below:- ( 1 ) PTC O-methylation; This reaction removes hydrogen bonds within the coal matrix by 'capping' the phenolic groups. It was found that the polymer-like matrix could be made more flexible, but not significantly more soluble, by O-methylation. I.E. the trapped or 'mobile' phase of the coals could be removed at a faster rate after this reaction had been carried out. ( 2 ) PTC Reductive and Acidic Ether Cleavage; The three coals were found to contain insignificant amounts of dialkyl and alkyl aryl ethers. The number of diaryl ethers could not be estimated, by reductive ether cleavage, (even though a high proportion of all three coals was solublised). The majority of the ethers present in the coals were inert to both cleavage methods, and are therefore assumed to be heterocyclic ethers. ( 3 ) Trif!uoroperacetic Acid Oxidation; This oxidant was used to study the aliphatic portions of the polymer-like macromolecular matrix of the coals. Normally this reagent will only solublise low rank coals, we however have developed a method whereby trifluoroperacetic acid can be used to degrade high rank bituminous coals. ( 4 ) PTC/Permanganate Oxidation; This reagent has been found to be much more selective than the traditional alkaline permanganate oxidation, with a lot more structural information being retained within the various fractions. This degradative method therefore has the potential of yielding new information about the molecular structure of coals.
Resumo:
A total pressure apparatus has been developed to measure vapour-liquid equilibrium data on binary mixtures at atmospheric and sub-atmospheric pressures. The method gives isothermal data which can be obtained rapidly. Only measurements of total pressure are made as a direct function of composition of synthetic liquid phase composition, the vapour phase composition being deduced through the Gibbs-Duhem relationship. The need to analyse either of the phases is eliminated. As such the errors introduced by sampling and analysis are removed. The essential requirements are that the pure components be degassed completely since any deficiency in degassing would introduce errors into the measured pressures. A similarly essential requirement was that the central apparatus would have to be absolutely leak-tight as any leakage of air either in or out of the apparatus would introduce erroneous pressure readings. The apparatus was commissioned by measuring the saturated vapour pressures of both degassed water and ethanol as a function of temperature. The pressure-temperature data on degassed water measured were directly compared with data in the literature, with good agreement. Similarly the pressure-temperature data were measured for ethanol, methanol and cyclohexane and where possible a direct comparison made with the literature data. Good agreement between the pure component data of this work and those available in the literature demonstrates firstly that a satisfactory degassing procedure has been achieved and that secondly the measurements of pressure-temperature are consistent for any one component; since this is true for a number of components, the measurements of both temperature and pressure are both self-consistent and of sufficient accuracy, with an observed compatibility between the precision/accuracy of the separate means of measuring pressure and temperature. The liquid mixtures studied were of ethanol-water, methanol-water and ethanol-cyclohexane. The total pressure was measured as the composition inside the equilibrium cell was varied at a set temperature. This gave P-T-x data sets for each mixture at a range of temperatures. A standard fitting-package from the literature was used to reduce the raw data to yield y-values to complete the x-y-P-T data sets. A consistency test could not be applied to the P-T-x data set as no y-values were obtained during the experimental measurements. In general satisfactory agreement was found between the data of this work and those available in the literature. For some runs discrepancies were observed, and further work recommended to eliminate the problems identified.
Resumo:
Porous ceramic materials of SiC were synthesized from carbon matrices obtained via pyrolysis of natural cork as precursor. We propose a method for the fabrication of complex-shaped porous ceramic hardware consisting of separate parts prepared from natural cork. It is demonstrated that the thickness of the carbon-matrix walls can be increased through their impregnation with Bakelite phenolic glue solution followed by pyrolysis. This decreases the material's porosity and can be used as a way to modify its mechanical and thermal characteristics. Both the carbon matrices (resulted from the pyrolysis step) and the resultant SiC ceramics are shown to be pseudomorphous to the structure of initial cork. Depending on the synthesis temperature, 3C-SiC, 6H-SiC, or a mixture of these polytypes, could be obtained. By varying the mass ratio of initial carbon and silicon components, stoichiometric SiC or SiC:C:Si, SiC:C, and SiC:Si ceramics could be produced. The structure, as well as chemical and phase composition of the prepared materials were studied by means of Raman spectroscopy and scanning electron microscopy.
Resumo:
A review is given of general chromatographic theory, the factors affecting the performance of chromatographi c columns, and aspects of scale-up of the chromatographic process. The theory of gel permeation chromatography (g. p. c.) is received, and the results of an experimental study to optimize the performance of an analytical g.p.c. system are reported. The design and construction of a novel sequential continuous chromatographic refining unit (SCCR3), for continuous liquid-liquid chromatography applications, is described. Counter-current operation is simulated by sequencing a system of inlet and outlet port functions around a connected series of fixed, 5.1 cm internal diameter x 70 cm long, glass columns. The number of columns may be varied, and, during this research, a series of either twenty or ten columns was used. Operation of the unit for continuous fractionation of a dextran polymer (M. W. - 30,000) by g.p.c. is reported using 200-400 µm diameter porous silica beads (Spherosil XOB07S) as packing, and distilled water for the mobile phase. The effects of feed concentration, feed flow rate, and mobile and stationary phase flow rates have been investigated, by means of both product, and on-column, concentrations and molecular weight distributions. The ability to operate the unit successfully at on-column concentrations as high as 20% w/v dextran has been demonstrated, and removal of both high and low molecular weight ends of a polymer feed distribution, to produce products meeting commercial specifications, has been achieved. Equivalent throughputs have been as high as 2.8 tonnes per annum for ten columns, based on continuous operation for 8000 hours per annum. A concentration dependence of the equilibrium distribution coefficient, KD observed during continuous fractionation studies, is related to evidence in the literature and experimental results obtained on a small-scale batch column. Theoretical treatments of the counter-current chromatographic process are outlined, and a preliminary computer simulation of the SCCR3 unit t is presented.
Resumo:
The objective of this work has been to investigate the principle of combined bioreaction and separation in a simulated counter-current chromatographic bioreactor-separator system (SCCR-S). The SCCR-S system consisted of twelve 5.4cm i.d x 75cm long columns packed with calcium charged cross-linked polystyrene resin. Three bioreactions, namely the saccharification of modified starch to maltose and dextrin using the enzyme maltogenase, the hydrolysis of lactose to galactose and glucose in the presence of the enzyme lactase and the biosynthesis of dextran from sucrose using the enzyme dextransucrase. Combined bioreaction and separation has been successfully carried out in the SCCR-S system for the saccharification of modified starch to maltose and dextrin. The effects of the operating parameters (switch time, eluent flowrate, feed concentration and enzyme activity) on the performance of the SCCR-S system were investigated. By using an eluent of dilute enzyme solution, starch conversions of up to 60% were achieved using lower amounts of enzyme than the theoretical amount required by a conventional bioreactor to produce the same amount of maltose over the same time period. Comparing the SCCR-S system to a continuous annular chromatograph (CRAC) for the saccharification of modified starch showed that the SCCR-S system required only 34.6-47.3% of the amount of enzyme required by the CRAC. The SCCR-S system was operated in the batch and continuous modes as a bioreactor-separator for the hydrolysis of lactose to galactose and glucose. By operating the system in the continuous mode, the operating parameters were further investigated. During these experiments the eluent was deionised water and the enzyme was introduced into the system through the same port as the feed. The galactose produced was retarded and moved with the stationary phase to be purge as the galactose rich product (GalRP) while the glucose moved with the mobile phase and was collected as the glucose rich product (GRP). By operating at up to 30%w/v lactose feed concentrations, complete conversions were achieved using only 48% of the theoretical amount of enzyme required by a conventional bioreactor to hydrolyse the same amount of glucose over the same time period. The main operating parameters affecting the performance of the SCCR-S system operating in the batch mode were investigated and the results compared to those of the continuous operation of the SCCR-S system. . During the biosynthesis of dextran in the SCCR-S system, a method of on-line regeneration of the resin was required to operate the system continuously. Complete conversion was achieved at sucrose feed concentrations of 5%w/v with fructose rich. products (FRP) of up to 100% obtained. The dextran rich products were contaninated by small amounts of glucose and levan formed during the bioreaction. Mathematical modelling and computer simulation of the SCCR-S. system operating in the continuous mode for the hydrolysis of lactose has been carried out. .
Resumo:
The continuous separation of beet molasses resulting in a sucrose rich product and a non-sugar waste product was carried out using a rotating annular chromatograph. The annulus was 12 mm wide and 1.4 m long and was packed with a sodium charged 5.5% cross-linked polystyrene ion exchange resin. Separation was achieved by the simultaneous mechanisms of ion exclusion, size exclusion and partition chromatography. The entire packed bed was slowly rotated while beet molasses was fed continuously through a stationary feed nozzle to the top of the bed. Each molasses constituent having a different relative affinity for the packing and the deionised water mobile phase describes a characteristic helical path as it progresses from the stationary feed point to the bottom of the rotating bed. Each solute then elutes from the annulus at a different angular distance from the feed and separation of the multicomponent mixture is thereby achieved. When a 35% w/w sucrose beet molasses feed was used the throughput achievable was 45.1 kg sucrose m~3 resin h"1. In addition to beet molasses separation other carbohydrate mixtures were separated. In particular the separation of glucose and fructose by Ligand exchange chromatography on a calcium charged ion exchange bed was carried out. The effects of flowrates, concentration, rotation rate, temperature and particle size on resolution and dilution of constituents in the mixtures to be separated were studied. A small test rig was designed and built to determine the cause of liquid maldistribution around the annulus. The problem was caused by the porous bed support media becoming clogged with fines being introduced by eluent flows and off the resin. An outer ring was constructed to house the bed support which could be quickly replaced with the onset of maldistribution. The computer simulation of the operation of the rotating annular chromatograph has been carried out successfully.
Resumo:
The aim of this work has been to investigate the behaviour of a continuous rotating annular chromatograph (CRAC) under a combined biochemical reaction and separation duty. Two biochemical reactions have been employed, namely the inversion of sucrose to glucose and fructose in the presence of the enzyme invertase and the saccharification of liquefied starch to maltose and dextrin using the enzyme maltogenase. Simultaneous biochemical reaction and separation has been successfully carried out for the first time in a CRAC by inverting sucrose to fructose and glucose using the enzyme invertase and collecting continuously pure fractions of glucose and fructose from the base of the column. The CRAC was made of two concentric cylinders which form an annulus 140 cm long by 1.2 cm wide, giving an annular space of 14.5 dm3. The ion exchange resin used was an industrial grade calcium form Dowex 50W-X4 with a mean diameter of 150 microns. The mobile phase used was deionised and dearated water and contained the appropriate enzyme. The annular column was slowly rotated at speeds of up to 240°h-1 while the sucrose substrate was fed continuously through a stationary feed pipe to the top of the resin bed. A systematic investigation of the factors affecting the performance of the CRAC under simultaneous biochemical reaction and separation conditions was carried out by employing a factorial experimental procedure. The main factors affecting the performance of the system were found to be the feed rate, feed concentrations and eluent rate. Results from the experiments indicated that complete conversion could be achieved for feed concentrations of up to 50% w/v sucrose and at feed throughputs of up to 17.2 kg sucrose per m3 resin/h. The second enzymic reaction, namely the saccharification of liquefied starch to maltose employing the enzyme maltogenase has also been successfully carried out on a CRAC. Results from the experiments using soluble potato starch showed that conversions of up to 79% were obtained for a feed concentration of 15.5% w/v at a feed flowrate of 400 cm3/h. The product maltose obtained was over 95% pure. Mathematical modelling and computer simulation of the sucrose inversion system has been carried out. A finite difference method was used to solve the partial differential equations and the simulation results showed good agreement with the experimental results obtained.
Resumo:
The objective of this work has been to study the behaviour and performance of a batch chromatographic column under simultaneous bioreaction and separation conditions for several carbohydrate feedstocks. Four bioreactions were chosen, namely the hydrolysis of sucrose to glucose and fructose using the enzyme invertase, the hydrolysis of inulin to fructose and glucose using inulinase, the hydrolysis of lactose to glucose and galactose using lactase and the isomerization of glucose to fructose using glucose isomerase. The chromatographic columns employed were jacketed glass columns ranging from 1 m to 2 m long and the internal diameter ranging from 0.97 cm to 1.97 cm. The stationary phase used was a cation exchange resin (PUROLITE PCR-833) in the Ca2+ form for the hydrolysis and the Mg2+ form for the isomerization reactions. The mobile phase used was a diluted enzyme solution which was continuously pumped through the chromatographic bed. The substrate was injected at the top of the bed as a pulse. The effect of the parameters pulse size, the amount of substrate solution introduced into the system corresponding to a percentage of the total empty column volume (% TECV), pulse concentration, eluent flowrate and the enzyme activity of the eluent were investigated. For the system sucrose-invertase complete conversions of substrate were achieved for pulse sizes and pulse concentrations of up to 20% TECV and 60% w/v, respectively. Products with purity above 90% were obtained. The enzyme consumption was 45% of the amount theoretically required to produce the same amount of product as in a conventional batch reactor. A value of 27 kg sucrose/m3 resin/h for the throughput of the system was achieved. The systematic investigation of the factors affecting the performance of the batch chromatographic bioreactor-separator was carried out by employing a factorial experimental procedure. The main factors affecting the performance of the system were the flowrate and enzyme activity. For the system inulin-inulinase total conversions were also obtained for pulses sizes of up to 20 % TECV and a pulse concentration of 10 % w/v. Fructose rich fractions with 100 % purity and representing up to 99.4 % of the total fructose generated were obtained with an enzyme consumption of 32 % of the amount theoretically required to produce the same amount of product in a conventional batch reactor. The hydrolysis of lactose by lactase was studied in the glass columns and also in an SCCR-S unit adapted for batch operation, in co-operation with Dr. Shieh, a fellow researcher in the Chemical Engineering and Applied Chemistry Department at Aston University. By operating at up to 30 % w/v lactose feed concentrations complete conversions were obtained and the purities of the products generated were above 90%. An enzyme consumption of 48 % of the amount theoretically required to produce the same amount of product in a conventional batch reactor was achieved. On working with the system glucose-glucose isomerase, which is a reversible reaction, the separation obtained with the stationary phase conditioned in the magnesium form was very poor although the conversion obtained was compatible with those for conventional batch reactors. By working with a mixed pulse of enzyme and substrate, up to 82.5 % of the fructose generated with a purity of 100 % was obtained. The mathematical modelling and computer simulation of the batch chromatographic bioreaction-separation has been performed on a personal computer. A finite difference method was used to solve the partial differential equations and the simulation results showed good agreement with the experimental results.
Resumo:
A literature review of work carried out on batch and continuous chromatographic biochemical reactor-separators has been made. The major part of this work has involved the development of a batch chromatographic reactor-separator for the production of dextran and fructose by the enzymatic action of the enzyme dextransucrase on sucrose. In this reactor, simultaneous reaction and separation occurs thus reducing downstream processing and isolation of products as compared to the existing industrial process. The chromatographic reactor consisted of a glass column packed with a stationary phase consisting of cross linked polysytrene resin in the calcium form. The mobile phase consisted of diluted dextransucrase in deionised water. Initial experiments were carried out on a reactor separtor which had an internal diameter of 0.97cm and length of 1.5m. To study the effect of scale up the reactor diameter was doubled to 1.94cm and length increased to 1.75m. The results have shown that the chromatographic reactor uses more enzyme than a conventional batch reactor for a given conversion of sucrose and that an increase in void volume results in higher conversions of sucrose. A comparison of the molecular weight distribution of dextran produced by the chromatographic reactor was made with that from a conventional batch reactor. The results have shown that the chromatographic reactor produces 30% more dextran of molecular weight greater than 150,000 daltons at 20% w/v sucrose concentration than conventional reactors. This is because some of the fructose molecules are prevented as acting as acceptors in the chromatographic reactor due to their removal from the reaction zone. In the conventional reactor this is not possible and therefore a greater proportion of low molecular weight dextran is produced which does not have much clinical use. A theoretical model was developed to describe the behaviour of the reactor separator and this model was simulated using a computer. The simulation predictions showed good agreement with experimental results at high eluent flowrates and low conversions.
Resumo:
Reversed-phase high-performance liquid chromatography procedures were developed for the analysis of pyrimidine-based drugs bropirimine and its derivatives (2-N-acetyl- and 2-N-propanoyl-) and for pyrimethamine and its 2/4- substituted derivatives (2, N-propanoyl and 2,4-N, N-dipropanoyl-) and its 6- substituted (methyl-, ethyl-, propyl- and isopropyl- carboxylates) analogues. Stability studies indicated that these derivatives were not sufficiently labile to act as potential prodrugs. Solubility-pH profiles were constructed from which the dissociation constants were calculated. The physicochemical properties of these compounds were studied and attempts were made to increase the poor aqueous solubility of bropirimine (35μg/mL) by prodrug synthesis, solvate formation (acetic acid, N, N-dimethylformamide and N-methylformamide) and the use of co-solvents and additives. The first two methods proved to be fruitless whereas the latter method resulted in an intravenous formulation incorporating 32mg/mL of bropirimine. An in-vitro method for the detection of precipitation was developed and the results suggested that by using low injection rates (< 0.24mL/min) and high mobile phase flow rates (> 500mL/hr) precipitation could be minimised. Differential scanning calorimetry showed that bropirimine debrominates in the presence of a number of additives commonly used in formulation work but the temperature at which this occurred were usually > 200oC. In-vitro work gave encouraging results for the possibility of rectal delivery of bropirimine but in-vivo work on rabbits showed considerable variations in the resulting plasma levels and pharmacokinetic parameters.
Resumo:
The work described in this thesis is an attempt to elucidate the relationships between the pore system and a number of engineering properties of hardened cement paste, particularly tensile strength and resistances to carbonation and ionic penetration. By examining aspects such as the rate of carbonisation, the pore size distribution, the concentration of ions in the pore solution and the phase composition of cement pastes, relationships between the pore system (pores and pore solution) and the resistance to carbonation were investigated. The study was carried out in two parts. First, cement pastes with different pore systems were compared, whilst secondly comparisons were made between the pore systems of cement pastes with different degrees of carbonation. Relationships between the pore structure and ionic penetration were studied by comparing kinetic data relating to the diffusion of various ions in cement pastes with different pore systems. Diffusion coefficients and activation energies for the diffusion process of Cl- and Na+ ions in carbonated and non-carbonated cement pastes were determined by a quasi-steady state technique. The effect of the geometry of pores on ionic diffusion was studied by comparing the mechanisms of ionic diffusion for ions with different radii. In order to investigate the possible relationship between tensile strength and macroporosity, cement paste specimens with cross sectional areas less than 1mm2 were produced so that the chance of a macropore existing within them was low. The tensile strengths of such specimens were then compared with those of larger specimens.
Resumo:
Three different stoichiometric forms of RbMn[Fe(CN) ]y·zHO [x = 0.96, y = 0.98, z = 0.75 (1); x = 0.94, y = 0.88, z = 2.17 (2); x = 0.61, y = 0.86, z = 2.71 (3)] Prussian blue analogues were synthesized and investigated by magnetic, calorimetric, Raman spectroscopic, X-ray diffraction, and Fe Mössbauer spectroscopic methods. Compounds 1 and 2 show a hysteresis loop between the high-temperature (HT) Fe(S = 1/2)-CN-Mn(S = 5/2) and the low-temperature (LT) Fe(S = 0)-CN-Mn(S = 2) forms of 61 and 135 K width centered at 273 and 215 K, respectively, whereas the third compound remains in the HT phase down to 5 K. The splitting of the quadrupolar doublets in the Fe Mössbauer spectra reveal the electron-transfer-active centers. Refinement of the X-ray powder diffraction profiles shows that electron-transfer-active materials have the majority of the Rb ions on only one of the two possible interstitial sites, whereas nonelectron-transfer-active materials have the Rb ions equally distributed. Moreover, the stability of the compounds with time and following heat treatment is also discussed. © Wiley-VCH Verlag GmbH & Co. KGaA, 2009.
Resumo:
Mass transfer rates were studied using the falling drop method. Cibacron Blue 3 GA dye was the transferring solute from the salt phase to the PEG phase. Measurements were undertaken for several concentrations of the dye and the phase-forming solutes and with a range of different drop sizes, e.g. 2.8, 3.0 and 3.7 mm. The dye was observed to be present in the salt phase as finely dispersed solids but a model confirmed that the mass transfer process could still be described by an equation based upon the Whitman two-film model. The overall mass transfer coefficient increased with increasing concentration of the dye. The apparent mass transfer coefficient ranged from 1 x 10-5 to 2 x 10 -4 m/s. Further experiments suggested that mass transfer was enhanced at high concentration by several mechanisms. The dye was found to change the equilibrium composition of the two phases, leading to transfer of salt between the drop and continuous phases. It also lowered the interfacial tension (i.e. from 1.43 x 10-4 N/m for 0.01% w/w dye concentration to 1.07 x 10-4 N/m for 0.2% w/w dye concentration) between the two phases, which could have caused interfacial instabilities (Marangoni effects). The largest drops were deformable, which resulted in a significant increase in the mass transfer rate. Drop size distribution and Sauter mean drop diameter were studied on-line in a 1 litre agitated vessel using a laser diffraction technique. The effects of phase concentration, dispersed phase hold-up and impeller speed were investigated for the salt-PEG system. An increase in agitation speed in the range 300 rpm to 1000 rpm caused a decrease in mean drop diameter, e.g. from 50 m to 15 m. A characteristic bimodal drop size distribution was established within a very short time. An increase in agitation rate caused a shift of the larger drop size peak to a smaller size.
Resumo:
The Scintillation Proximity Assay (SPA) is a method that is frequently used to detect and quantify the strength of intermolecular interactions between a biological receptor and ligand molecule in aqueous media. This thesis describes the synthesis of scintillant-tagged-compounds for application in a novel cell-based SPA. A series of 4-functianlised-2,5-diphenyloxazole molecules were synthesised. These 4-functionalised-2,5-diphenyloxazoles were evaluated by Sense Proteomic Ltd. Accordingly, the molecules were evaluated for the ability to scintillate in the presence of ionising radiation. In addition, the molecules were incorporated into liposomal preparations which were subsequently evaluated for the ability to scintillate in the presence of ionising radiation. The optimal liposomal preparation was introduced into the membrane of HeLa cells that were used successfully in a cell-based SPA to detect and quantify the uptake of [14C]methionine. This thesis also describes the synthesis and subsequent polymerisation of novel poly(oxyethylene glycol)-based monomers to form a series of new polymer supports. These Poly(oxyethylene glycol)-polymer (POP) supports were evaluated for the ability to swell and mass-uptake in a variety of solvents, demonstrating that POP-supports exhibit enhanced solvent compatibilities over several commercial resins. The utility of POP-supports in solid-phase synthesis was also demonstrated successfully. The incorporation of (4’-vinyl)-4-benzyl-2,5-diphenyloxazole in varying mole percentage into the monomer composition resulted in the production of chemically functionalised scintillant-containing poly(oxyethylene glycol) polymer (POP-Sc) supports. These materials are compatible with both aqueous and organic solvents and scintillate efficiently in the presence of ionising radiation. The utility of POP-Sc supports in solid-phase synthesis and subsequent in-situ SPA to detect and quantify, in real-time, the kinetic progress of a solid-phase reaction was exemplified successfully.In addition, POP-Sc supports were used successfully both in solid-phase combinatorial synthesis of a peptide nucleic acid (PNA)-library and subsequent screening of this library for the ability to hybridise with DNA, which was labelled with a suitable radio-isotape. This data was used to identify the dependence of the number and position of complimentary codon pairs upon the extent of hybridisation. Finally, a further SPA was used to demonstrate the excellent compatibility of POP-Sc supports for use in the detection and quantification of enzyme assays conducted within the matrix of the POP-Sc support.
Resumo:
This thesis describes the development of a simple and accurate method for estimating the quantity and composition of household waste arisings. The method is based on the fundamental tenet that waste arisings can be predicted from information on the demographic and socio-economic characteristics of households, thus reducing the need for the direct measurement of waste arisings to that necessary for the calibration of a prediction model. The aim of the research is twofold: firstly to investigate the generation of waste arisings at the household level, and secondly to devise a method for supplying information on waste arisings to meet the needs of waste collection and disposal authorities, policy makers at both national and European level and the manufacturers of plant and equipment for waste sorting and treatment. The research was carried out in three phases: theoretical, empirical and analytical. In the theoretical phase specific testable hypotheses were formulated concerning the process of waste generation at the household level. The empirical phase of the research involved an initial questionnaire survey of 1277 households to obtain data on their socio-economic characteristics, and the subsequent sorting of waste arisings from each of the households surveyed. The analytical phase was divided between (a) the testing of the research hypotheses by matching each household's waste against its demographic/socioeconomic characteristics (b) the development of statistical models capable of predicting the waste arisings from an individual household and (c) the development of a practical method for obtaining area-based estimates of waste arisings using readily available data from the national census. The latter method was found to represent a substantial improvement over conventional methods of waste estimation in terms of both accuracy and spatial flexibility. The research therefore represents a substantial contribution both to scientific knowledge of the process of household waste generation, and to the practical management of waste arisings.