3 resultados para mineral matter

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Short rotation willow coppice (SRC) has been investigated for the influence of K, Ca, Mg, Fe and P on its pyrolysis and combustion behaviours. These metals are the typical components that appear in biomass. The willow sample was pretreated to remove salts and metals by hydrochloric acid, and this demineralised sample was impregnated with each individual metal at the same mol g biomass (2.4 × 10 mol g demineralised willow). Characterisation was performed using thermogravimetric analysis (TGA), and differential thermal analysis (DTA) for combustion. In pyrolysis, volatile fingerprints were measured by means of pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS). The yields and distribution of pyrolysis products have been influenced by the presence of the catalysts. Most notably, both potassium and phosphorous strongly catalysed the pyrolysis, modifying both the yield and distribution of reaction products. Temperature programmed combustion TGA indicates that combustion of biomass char is catalysed by all the metals, while phosphorus strongly inhibits the char combustion. In this case, combustion rates follow the order for volatile release/combustion: P>K>Fe>Raw>HCl>Mg>Ca, and for char combustion K>Fe>raw>Ca-Mg>HCl>P. The samples impregnated with phosphorus and potassium were also studied for combustion under flame conditions, and the same trend was observed, i.e. both potassium and phosphorus catalyse the volatile release/combustion, while, in char combustion, potassium is a catalyst and phosphorus a strong inhibitor, i.e. K impregnated>(faster than) raw>demineralised»P impregnated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper investigates four reference fuels and three low lignin Lolium Festuca grasses which were subjected to pyrolysis to produce pyrolysis oils. The oils were analysed to determine their quality and stability, enabling the identification of feedstock traits which affect oil stability. Two washed feedstocks were also subjected to pyrolysis to investigate whether washing can enhance pyrolysis oil quality. It was found that the mineral matter had the dominate effect on pyrolysis in compared to lignin content, in terms of pyrolysis yields for organics, char and gases. However the higher molecular weight compounds present in the pyrolysis oil are due to the lignin derived compounds as determined by results of GPC and liquid-GC/MS. The light organic fraction also increased in yield, but reduced in water content as metals increased at the expense of the lignin content. It was found that the fresh oil and aged oil had different compound intensities/concentrations, which is due to a large number of reactions occurring when the oil is aged day by day. These findings agree with previous reports which suggest that a large amount of re-polymerisation occurs as levoglucosan yields increase during the aging progress, while hydroxyacetaldehyde decrease. In summary the paper reports a window for producing a more stable pyrolysis oil by the use of energy crops, and also show that washing of biomass can improve oil quality and stability for high ash feedstocks, but less so for the energy crops.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The primary objective of this work is to relate the biomass fuel quality to fast pyrolysis-oil quality in order to identify key biomass traits which affect pyrolysis-oil stability. During storage the pyrolysis-oil becomes more viscous due to chemical and physical changes, as reactions and volatile losses occur due to aging. The reason for oil instability begins within the pyrolysis reactor during pyrolysis in which the biomass is rapidly heated in the absence of oxygen, producing free radical volatiles which are then quickly condensed to form the oil. The products formed do not reach thermodynamic equilibrium and in tum the products react with each other to try to achieve product stability. The first aim of this research was to develop and validate a rapid screening method for determining biomass lignin content in comparison to traditional, time consuming and hence costly wet chemical methods such as Klason. Lolium and Festuca grasses were selected to validate the screening method, as these grass genotypes exhibit a low range of Klason /Acid Digestible Fibre lignin contents. The screening methodology was based on the relationship between the lignin derived products from pyrolysis and the lignin content as determined by wet chemistry. The second aim of the research was to determine whether metals have an affect on fast pyrolysis products, and if any clear relationships can be deduced to aid research in feedstock selection for fast pyrolysis processing. It was found that alkali metals, particularly Na and K influence the rate and yield of degradation as well the char content. Pre-washing biomass with water can remove 70% of the total metals, and improve the pyrolysis product characteristics by increasing the organic yield, the temperature in which maximum liquid yield occurs and the proportion of higher molecular weight compounds within the pyrolysis-oil. The third aim identified these feedstock traits and relates them to the pyrolysis-oil quality and stability. It was found that the mineral matter was a key determinant on pyrolysis-oil yield compared to the proportion of lignin. However the higher molecular weight compounds present in the pyrolysis-oil are due to the lignin, and can cause instability within the pyrolysis-oil. The final aim was to investigate if energy crops can be enhanced by agronomical practices to produce a biomass quality which is attractive to the biomass conversion community, as well as giving a good yield to the farmers. It was found that the nitrogen/potassium chloride fertiliser treatments enhances Miscanthus qualities, by producing low ash, high volatiles yields with acceptable yields for farmers. The progress of senescence was measured in terms of biomass characteristics and fast pyrolysis product characteristics. The results obtained from this research are in strong agreement with published literature, and provides new information on quality traits for biomass which affects pyrolysis and pyrolysis-oils.