4 resultados para microstructural development

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A thermodynamic analysis which is capable of estimating the austenite/ferrite equilibria in duplex stainless steels has been carried out using the sublattice thermodynamic model. The partitioning of alloying elements between the austenite and ferrite phases has been calculated as a function of temperature. The results showed that chromium partitioning was not influenced significantly by the temperature. The molybdenum, on the other hand, was found to partition preferentially into ferrite phase as the temperature decreases. A strong partitioning of nickel into the austenite was observed to decrease gradually with increasing temperature. Among the alloying elements, average nitrogen concentration was found to have the most profound effect on the phase balance and the partitioning of nitrogen into the austenite. The partitioning coefficient of nitrogen (the ratio of the mole fraction of nitrogen in the austenite to that in the ferrite) was found to be as high as 7.0 around 1300 K. Consequently, the volume fraction of austenite was influenced by relatively small additions of nitrogen. The results are compared with the experimentally observed data in a duplex stainless steel weld metal in conjunction with the solid state δ → δ + γ phase transformation. Particular attention was given to the morphological instability of grain boundary austenite allotriomorphs. A compariso between the experimental results and calculations indicated that the instability associated with irregular austenite perturbations results from the high degree of undercooling. The results suggest that the model can be used successfully to understand the development of the microstructure in duplex stainless steel weld metals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation has been made of the microstructural stability of aluminide diffusion coatings during post-coating thermal exposure. This study has employed edge-on transmission electron microscopy to examine high-activity pack aluminised single crystals of a gamma prime strengthened nickel-base superalloy. The influence of exposure temperature, duration and atmosphere as well as the initial coating thickness has been assessed. Two major processes have been found to contribute to microstructural changes in the coating. These are, firstly, the transformation of the coating matrix (β-phase, nominally NiAl) to other Ni-Al based phases, especially γ' (nominally Ni3(Al, Ti)) and, secondly, the precipitation of chromium containing phases. The work has enabled the roles of three processes contributing to γ formation, namely: oxidation of the coating surface, interdiffusion with the substrate and ageing of the coating, to be understood. In addition, the factors leading to the formation of a sequence of chromium-containing phases have been identified.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A textural and microstructural study of a variety of zinc sulfide-containing ores has been undertaken, and the possible depositional and deformational controls of textural and microstructural development considered. Samples for the study were taken from both deformed and undeformed zinc ores of the Central U.S. Appalachians, and deformed zinc ores of the English Pennines. A variety of mineralogical techniques were employed, including transmitted and reflected light microscopy of etched and unetched material, transmission electron microscopy and electron microprobe analysis. For the Pennine zinc sulfides, spectroscopic, x-ray diffraction and fluid inclusion studies were also undertaken. Optical and electron optical examination of the Appalachian material confirmed the suitability of zinc sulfide for detailed study with such techniques. Growth and deformation-related microstructures could be distinguished from specimen-preparation induced artifacts. A deformationally-mduced lamelliform optical anisotropy is seen to be developed in areas hosting a dense planar microstructure of {111} twin- and slip-planes. The Pennine zinc sulfide texturally records a changing depositional environment. Thus, for example, delicately growth- zoned crystals are truncated and cross-cut by solution disconformities. Fluid inclusion studies indicate a highly saline (20-25 wt. % equiv. NaCl), low temperature (100-150°C.) fluid. Texturally, two varieties of zinc sulfide can be recognised; a widely developed, iron- banded variety, and a paragenetically early variety, banded due to horizons rich in crystal defects and microscopic inclusions. The zinc sulfide takes the form of a disordered 3C-polytype, with much of the disorder being deformational in origin. Twin- and slip-plane fabrics are developed . A deformation-related optical anisotropy is seen to overprint growth-related anisotropy, along with cuprian alteration of certain {111} deformation planes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aluminide diffusion coatings are frequently employed to enhance the oxidation resistance of nickel base superalloys. However, there is a concern that the presence of an aluminide coating could influence the properties of the coated superalloy, especially in respect of fatigue behaviour. To understand the nature of the effects of surface coatings on the fatigue properties of superalloys, an understanding of microstructural development within both the coating and the coating/substrate interfacial zone during high temperature fatigue testing is necessary. This paper is concerned with microstructural changes in aluminide diffusion coatings on single crystal γ′ strengthened superalloy substrates during the course of high temperature fatigue testing. The 'edge on' transmission electron microscopy technique is employed to study cross-sections of two stage (aluminization plus diffusion treatment) coated superalloy samples. The paper examines the degradation of the coating produced by phase transformations induced by loss of aluminum from the coating and/or aging of the coating. Aluminum removal both by interdiffusion with the substrate and by oxidation of the coating surface is considered. Microstructural development in the portion of the substrate influenced by interdiffusion with the coating is also discussed.